
MAGAZINE#16 / 2023

0+

THE LATEST TRENDS AND TECHNOLOGIES IN THE IT WORLD

Narrowing the human factor:
The route towards improved
safety on the road

Fuzzing! Why traditional
testing is not enough

Practical introduction to
Java multithreading

50.

28.

4.

Abdallah Bader, Riccardo Pinto and
Vincenzo Campanale

Narrowing the human factor: The route
towards improved safety on the road4

Anghel Paul-Lucian

Problems of event-based communication
in micro frontends12

James Hopson and Mihnea Ionescu
Automating 5G and O-RAN testing24

Mahmoud Yehia
Practical introduction to Java multithreading28

Parameswaran Sivaramakrishnan

Workflow orchestration and integration:
Streamlining process automation38

Why is precise monitoring and
observability so crucial for trading
systems?
Nimmala Naga Santhosh Baba

44

Fuzzing! Why traditional testing
is not enough

Luigi Bassetta

50

Encouraging a forward-thinking, yet cautious
approach to LLM integration in software
engineering activities

Emil Marian Pasca

56

The intersection of big data
and artificial intelligence

Siddharth Garg

66

The Hidden Gems of Java 20
Mohamed Taman and Catalin Tudose

72

CO
N

TE
N

TS#16 / 2023

Narrowing the human
factor: The route
towards improved
safety on the road

Introduction

In 2022, the automotive market saw the introduction
of the first SAE Level 3 Automated Driving1 function:
the Mercedes Drive Pilot. Other car makers will follow
soon. The jump from SAE Level 2 to SAE Level 3 signals
a revolution from a safety perspective. SAE Level 0-1-2
functions are considered support features, i.e., the
driver is still responsible for controlling the vehicle.
With SAE Level 3 functions, drivers can disengage
from the driving task and focus their attention on
something else (with some limitations, for example,
sleeping is not allowed). When conditions don’t allow
for the autonomous driving (AD) function to stay
engaged, the driver must take over the driving task.
However, in such cases, the AD function must still
give the driver time to redirect their focus. So, when
the SAE Level 3 function is engaged, the vehicle must
react to safety-critical situations without the driver’s
support, even for a few seconds after a takeover
request.

With the release of highly automated driving
functions to broad use, these functions need to
guarantee a safety level that is socially acceptable.
For example, guarantee a crash rate that is lower than
human-based driving and with less injuries and
fatalities.

This raises the questions:

•	 How can an autonomous vehicle be safer than a
human-driven vehicle?

•	 What are the key similarities and differences
between the two in terms of perceiving the
environment, motion planning and controlling the
vehicle?

•	 How should the design phase be organized to
achieve a system that can be considered safe?

Human versus autonomous
driving — a comparison

Since the late 1970s, the Sense-Think-Act paradigm
has served as a broad road map for robotics
research2. Today, AD functions use similar approaches
to achieve self-driving capabilities. So, how do AD
functions compare to human drivers in terms of
driving performance and safety?

Let us consider driving on a highway, which requires
the ability to react safely to various road users: A
vehicle stays in its lane and maintains a safe distance

from other vehicles to avoid potential collisions. How
do humans and self-driving vehicles accomplish this
task?

AD functions rely on computer vision and other
sensing technologies, such as Light Detection
and Ranging (LiDAR) or radar, to reconstruct an
environment model and to predict surrounding
objects as well as their dynamic trajectories. AD
functions regulate speed, steer the vehicle to stay
centered in its lane, keep a safe distance from the
lead vehicle and adapt to other surrounding traffic
participants. The safe distance embedded into the
automatic driving strategy is a hard boundary that
must be continuously satisfied while considering
comfort factors such as limiting jerk3.

Human drivers primarily rely on vision to perceive
their surroundings. They keep the vehicle within
the lane relying on associative learning experience,
maintain a safe distance from other vehicles, take
corrective actions (based on visual cues), detect
and anticipate hazards and stay aware of their
surroundings, while following traffic rules.

The reaction time of a driver is one second on
average. AD functions can calculate actions in about
100-200 milliseconds but will only decide on actions
after perceiving its surroundings. Empirical studies
from 2018 found that the reaction time of self-driving
technologies is almost equal to that of the average
human driver4.

Human drivers rely heavily on visual cues. To avoid
crashes, they mainly resort to braking5. Blind spots
and limited peripheral vision can impede a driver’s
ability to deal with all vehicles and road objects,
whereas AD functions perception provides a 360°
view. Motion planning algorithms can deal with
multiple surrounding vehicles at the same time by
considering most probable trajectories6.

AD functions measure the state of its surroundings
with known accuracy and precision, while spatial and
temporal estimations made by human drivers are
fuzzy and relative to their current state.

Sensing involves capturing patterns of light to extract
visual information for functional needs. The retina
is accustomed to a broad range of luminance, from
starlight to direct sunlight. In contrast, computer
vision relies on CMOS (Complementary Metal Oxide
Semiconductor) technology, which captures the
environment on a frame-by-frame basis that only
considers pixel intensities. In addition, the retina
becomes less active when the surroundings are static,
whereas computer vision technologies process each

frame regardless of whether there is a change in light
intensity7.

Visual demands of the driving task are far beyond any
other everyday task8. While humans rely on vision,
AD functions can use other active sensors like LiDARs
and radars. Radars have the advantage of direct
velocity measurements and robustness in harsh
weather. LiDARs have high distance measurement
accuracy; uncertainty in the distance measurements
is independent from the actual distance to an object.
But they provide little information about object
texture compared to cameras and are sensitive to
environmental factors such as low reflectivity and
precipitation9.

Berk8 further uses a passive and active sensing
approach to achieve acceptable perception errors by
deriving reliability requirements for individual sensors.
He relies on the “k out of n” vote, which decides
how credible object detection is by only planning for
objects detected by k number of sensors. Data shows
that AD functions with various sensing configurations
and approaches — whether mainly relying on passive
sensing like cameras, or active sensing like LiDAR
— increase the number of driven miles before an
accident happens compared to human drivers10,11,12.

Long before the development of autonomous driving
technologies, researchers were already studying driver
perception, particularly in response to the so-called “I
looked but I did not see” accidents. Driver perception
is the continuous information selection and processing
where loss of information can occur due to the low
probability of an event occurring, the context and
the sequence in which information is presented.
Machine perception relies on data sets and pattern
identification models that are prone to similar errors.
Driver perception is also described by the awareness
model (1995, Endsley) as “perception of environmental
elements in terms of time and spatial measurements,
understanding their meaning, and foreseeing their
state in the immediate future”. This overlaps with
machine perception8.

4

#16/2023

5

Let’s study steering control models. Donges13
has suggested a two-level steering model of
vehicle guidance and stabilization that conforms
to cybernetics description of the brain as having
reactive and adaptive layers. The reactive layer relies
on feedback control mechanisms and represents
hardwired reactions, while the adaptive layer
represents associative learning and anticipatory
behaviors14. Whereas self-driving systems rely on
closed-loop control models to steer the vehicle. Those
models function by continuously updating steering
input based on perception but lack the anticipatory
open-loop control behavior that human drivers
use. While attempts have been made to augment
self-driving technologies with human-like steering
using past driving experiences15, they differ in the
underlying architecture.

Verschure14 maps the human brain’s function of
deliberate goal-oriented behavior into a contextual
layer. Such a layer defines the ability to act flexibly
when planning high level objectives. This can be
mapped to actions like taking exits, changing lanes,
surpassing maneuvers, etc. On a trajectory level, AD
functions generate future trajectories while taking
hard and soft boundaries into consideration, for
example using a model-predictive controller. Those
trajectories are assessed for safety and if drivers are
not able to take over minimal risk, maneuvers shall be
executed16.

Human role in the driving task

Each year, 1.35 million people lose their lives on
roadways worldwide17. With injuries from car crashes
being the leading cause of death for children and
young people 5–29 years of age and the eighth leading
one for all age groups, more people today are dying in
car crashes than from HIV/AIDS18.

This vast number of accidents also has a relevant
economic impact. In a study published on Lancet
(The global macroeconomic burden of road injuries:
estimates and projections for 166 countries)19, it’s
estimated that the cost of both fatal and non-fatal
injuries from car crashes will cost the world economy
$1.8 trillion between 2015 and 2030, around 0.12% of
the global gross domestic product (GDP).

Human factors play a significant role in the incidence
and severity of car accidents. Human error is
responsible for more than 90% of traffic accidents
worldwide, as it is shown in A review of traffic
accidents and related practices worldwide20 —
mainly due to distractions and rash maneuvers. There
are additional factors in play, though. In Human
factors in the causation of road traffic crashes21,
a systematic review of the literature shows that
cognitive, behavioral and environmental factors could
sum up and increase the probability of an accident.
Things like texting while driving, looking for an object
in the vehicle, changing the radio frequency or
even just talking with another passenger could lead
drivers to imprudent behaviors and impact driving
performance. Manual, visual and cognitive distractions
mostly affect complex driving situations, like merging
lanes, cut-ins and driving through dangerous
intersections. If such distractions could be minimized,
driving safety would improve dramatically22.

The visual attention drivers give to the road could
also be a risk factor, depending on how and what
our brain gives attention to. In Where and What
- Driver Attention-based Object Detection23, the
authors studied the object-detection of drivers using
eye-tracking technology. They found that the most
focused area is the one directly in front of the vehicle,
giving the areas to the side and the rear less attention.
This can lead to a natural bias in deciding if an object
or a situation could be dangerous or not, leading to
additional accidents.

Human drivers are also heavily affected by weather
conditions. Even though intuition and versatility can
help in these situations (e.g., by reducing speed),
the limits of humans’ natural “sensors” cannot be
overcome — at least not as much as sensors in
self-driving cars can.

In Perception and sensing for autonomous vehicles under adverse weather conditions: A survey24, the authors
show that even though self-driving cars suffer from severe limitations while driving in adverse weather conditions
such as snow or heavy rain, these limitations could be mitigated with data fusion techniques, based on sensors
like LiDARs, radars and cameras to compensate for each other in situations when one of these sensors could fail.
Furthermore, Hawkins shows that removing radar causes more phantom braking25.

Finally, human drivers are prone to additional specifically human risk factors as fatigue, drug use, alcohol and bold
behaviors like excessive speeding, which could contribute to accidents. As shown in The role of human factor in
incidence and severity of road crashes based on the CART and LR regression — a data mining approach26 the
driver’s behavior is present in 83.6% of the accidents. Among these accidents, the ones with serious injuries or
casualties are also those which have the greatest “blame” on humans.

Sleep deprivation is another crucial factor, which can affect the abilities of the driver and contribute to increasing
the risk of car crashes and accidents in general. In Vehicle accidents related to sleep27 by reviewing the data
collected in police reports and hospital records, it is shown that accidents caused by sleep deprivation are more
lethal than other kinds of accidents, happening in avoidable and safe circumstances, like driving at night on long
and straight roads.

The current solutions to some of the mentioned factors in human driving typically rely on law enforcement and
prevention through education, with a limited technology assistance like driver’s conditions monitoring systems.
Because the human factor is so impacting, as shown in this article, the adoption of self-driving cars at a large scale
could significantly reduce the number of car accidents by canceling human error, given that safety is ensured with
alternative and proper regulations. In our next article “Safety-driven development”, we take a deeper look at how
such systems are developed.

Authors Reference

1 SAE International
Taxonomy and Definitions for Terms Related to Driving Automation Systems for
On-Road Motor Vehicles J3016_202104. Retrieved from https://www.sae.org/
standards/content/j3016_202104/

2 M. Siegel The sense-think-act paradigm revisited

3 Silvia Magdici,
Matthias Althof Adaptive Cruise Control with Safety Guarantees for Autonomous Vehicles

4 Michail Makridis, et al.
Estimating empirically the response time of
commercially available ACC controllers under urban
and freeway conditions

5 Daniel Lechner, Gilles
Malaterre Emergency Manuever Experimentation Using a Driving Simulator

6 Silvia Bresug Motion Planning of Autonomous Vehicles
with Safety Guarantees

7 N V Kartheek,et al. Bio-Inspired Computer Vision: Towards a Synergistic
Approach of Artificial and Biological Vision

8 Candida Castro et al. Human Factors of Visual and Cognitive Performance in Driving

9 Mario Jürgen Berk Safety Assessment of Environment Perception in Automated Driving Vehicles

10 Eric R. Teoh, David G.
Kidd Rage against the machine? Google’s self-driving cars versus human drivers

11 Andrew J. Hawkins
(2023)

https://www.theverge.com/2023/2/28/23617278/waymo-self-driving-driverless-
crashes-av

12 Tesla, Inc. https://www.tesla.com/VehicleSafetyReport

13 Donges, E. (1978) A Two-Level Model of Driver Steering Behavior. Human Factors, 20(6), 691–707.
https://doi.org/10.1177/001872087802000607

14 Verschure, 2012 Distributed Adaptive Control: A theory of the Mind, Brain, Body Nexus

15 Flavia Sofia Acerbo, et al. MPC-based Imitation Learning for Safe and Human-like Autonomous Driving

16 Balakrishnan, K.,
Functional Safety Concept of “Minimum Risk
Maneuver” in Conditional Driving Automation
(Level 3) Vehicles

6

#16/2023

76

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://ourworldindata.org/hiv-aids
https://opentransportationjournal.com/VOLUME/13/PAGE/65/FULLTEXT/
https://opentransportationjournal.com/VOLUME/13/PAGE/65/FULLTEXT/
https://www.sciencedirect.com/science/article/pii/S2352146520302192/pdf?md5=a80fbc22409fa28d4d161509090ba20c&pid=1-s2.0-S2352146520302192-main.pdf
https://www.sciencedirect.com/science/article/pii/S2352146520302192/pdf?md5=a80fbc22409fa28d4d161509090ba20c&pid=1-s2.0-S2352146520302192-main.pdf
https://arxiv.org/pdf/2204.12150
https://arxiv.org/pdf/2204.12150
https://www.sciencedirect.com/science/article/pii/S0924271622003367
https://www.sciencedirect.com/science/article/pii/S1877050910005016
https://www.sciencedirect.com/science/article/pii/S1877050910005016
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1757738/
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
https://www.theverge.com/2023/2/28/23617278/waymo-self-driving-driverless-crashes-av
https://www.theverge.com/2023/2/28/23617278/waymo-self-driving-driverless-crashes-av
https://www.tesla.com/VehicleSafetyReport

17 WHO https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
18 Our World in Data https://ourworldindata.org/hiv-aids

19 Chen et al. https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(19)30170-6/
fulltext

20 A.A. Mohamed et al. https://opentransportationjournal.com/VOLUME/13/PAGE/65/FULLTEXT/

21 Bucsuházy et al. https://www.sciencedirect.com/science/article/pii/S2352146520302192

22 Yuen et al. https://www.frontiersin.org/articles/10.3389/fnhum.2021.659040/full

23 Rong et al. https://arxiv.org/pdf/2204.12150.pdf

24 Zhang et al. https://www.sciencedirect.com/science/article/pii/S0924271622003367

25 Andrew J. Hawkins
(2022)

https://www.theverge.com/2022/6/3/23153241/tesla-phantom-braking-nhtsa-
complaints-investigation

26 Pakgohar et al. https://www.sciencedirect.com/science/article/pii/S1877050910005016

Safety-driven development

While an attentive human brain can assess and act
for almost every driving situation, an autonomous
vehicle needs to react in pre-defined ways to
safety-related situations. In general, it is not possible
to design an autonomous vehicle that guarantees
absolute safety, or, in other words, that will never
be involved in an accident. That is because the road
is an evolving environment, and it is shared with
other traffic participants whose behavior cannot be
controlled. Beyond developing the nominal behavior
of an autonomous driving function, safety-driven
development involves many activities and supporting
processes.

A first effort should be made to identify potential
hazardous behaviors of the intended functionality
as well as the circumstances where such hazardous
behavior can lead to harm. The hazards caused by
functional insufficiencies are usually identified at the
vehicle level. An example is an emergency braking
maneuver triggered by a ghost object perceived near
the front by the camera. Such a reaction can cause
harm, like a collision from behind if a car is following
closely. Further hazardous behaviors can stem from
the interaction of the driver with the AD function itself.

For each identified hazardous behavior, it is
required to perform a risk analysis to understand
if the risk is unreasonable in some situations. An
unreasonable risk is a risk considered unacceptable
according to societal moral concepts. For such risk
analysis, methods in1 can be used, e.g., by evaluating
controllability, severity and exposure.

Design effort can be made to make a specific risk
reasonable. For example, the severity of a rear
collision can be reduced by limiting the emergency
braking deceleration in some circumstances, a safety
measure that improves controllability.

However, if the analysis shows that for a particular
hazardous behavior the risk is unreasonable, new
acceptance criteria for the residual risk need to be
formulated. The formulation of such acceptance
criteria might be influenced by:

•	 Governmental regulations

•	 Statistics of human-based driving incidents

•	 Function maturity (whether the function is new or
already established in the market)

•	 The expected behavior of an experienced driver

Typical principles used for defining an acceptable
residual risk are:

•	 GAMAB2 “globally at least as good”. This principle
can be used when a similar system or technology
is already universally used, so that its residual risk
has already been accepted. This principle states
that the new system must not introduce higher
risk as the system universally used. For example,
automated emergency braking systems should
not cause a rear-collision-rate higher than the rate
caused by human-based driving.

•	 ALARP “as low as reasonably practicable”. This
principle can be used when a technology is totally
new and it is not possible to compare it with
existing technology. Since it is not possible to
fully eliminate risk, this principle is aimed to find

•	 MEM “Minimums Endogenous Mortality”. This
principle states that a recent technology should
not significantly increase the death rate in the
society3.

•	 Such criteria can be used separately or in
combination to formulate overall acceptance
criteria for the AD Function under development.

•	 When acceptance criteria have been established
and are agreed upon, the next activity consists of
identifying the triggering conditions and system
insufficiencies that can cause such harmful
behavior. There could be multiple triggering
conditions at the functional level that can lead
to hazardous behavior at the vehicle level. For
example, unintended steering can be caused by a
wrong detection of the road markings, incorrect
planned trajectory or incorrect actuation. Such
triggering conditions usually happen in specific
scenarios within the operative design domain
(ODD). Harsh weather or challenging road and
traffic conditions are typical examples.

To generalize, system insufficiencies and triggering
conditions can be related to every building block of an
AD function:

•	 Environment perception

	- Poor weather conditions affecting sensor
measurement quality

	- Unpaved road causing noisy sensor outputs
due to vibrations

•	 Planning algorithms

	- Driving scenario, e.g., traffic jam with
emergency corridor

	- Specific behavior of other traffic participants

	- Known planning algorithm limitations in
handling specific scenarios

•	 Actuators

	- Limited response time or accuracy of
actuators to execute a planned trajectory

	- Limited actuator performance, like maximum
braking capability of the braking system

Hazardous behavior can also result from a misuse of
the AD function by the driver. For example, the driver
might fail to understand the state of the system and
be unaware to take back control when it is requested.
This event can be considered a triggering condition of
hazardous behavior if the system is not designed to
properly handle such a situation.

Once the scenarios that contain the triggering
conditions have been identified, they can be checked
against the acceptance criteria previously defined to
clarify if the safety of the intended functionality (SOTIF)
has been achieved. The SOTIF can be achieved without
further functional modifications if there is no known
scenario that could lead to unreasonable risk or the
residual risk of hazardous behavior is lower than the
specified acceptance criteria.

If the safety of the intended functionality is not
satisfied, a combination of avoidance and mitigation
measures need to be implemented to lower
the residual risk. Avoidance measures are safe
design measures aiming to bring risk severity or
controllability to zero level. Functional modifications
are a typical approach. Mitigation measures are
implemented when the risk cannot be fully avoided
but they try to minimize it to a level that can be
considered acceptable. It is important to note that
such measures must not have negative effects on
other elements and must not interact with other
safety-related scenarios. Possible measures are:

System modifications:

The aim is not to change or degrade the intended
functionality. This includes modifications at one or
multiple building blocks of the system like improving
sensor or actuator performance, or modifying
planning algorithms

Restrictions of the functionality:

The effect is to waive part of the intended
functionality. This includes limitation of the ODD, i.e.,
the conditions under which the driving automation
function is designed to operate

Addressing possible driver misuse:

E.g., by improving the HMI or implementing a driver
monitoring system

After the system has been updated to satisfy the
acceptance criteria for the residual risk, “verification
& validation” (V&V) activities need to be initiated. Such
activities need to be first defined in a V&V plan. The
plan aims to detail a strategy for verifying that the
SOTIF goals are achieved and the rationale behind it.

fully eliminate risk, this principle is aimed to find
a compromise between a stated risk level and the
effort needed to further reduce it.

8

#16/2023

98

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://ourworldindata.org/hiv-aids
https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(19)30170-6/fulltext
https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(19)30170-6/fulltext
https://opentransportationjournal.com/VOLUME/13/PAGE/65/FULLTEXT/
https://www.sciencedirect.com/science/article/pii/S2352146520302192
https://www.frontiersin.org/articles/10.3389/fnhum.2021.659040/full
https://arxiv.org/pdf/2204.12150.pdf
https://www.sciencedirect.com/science/article/pii/S0924271622003367
https://www.theverge.com/2022/6/3/23153241/tesla-phantom-braking-nhtsa-complaints-investigation
https://www.theverge.com/2022/6/3/23153241/tesla-phantom-braking-nhtsa-complaints-investigation
https://www.sciencedirect.com/science/article/pii/S1877050910005016

First, the new functionality needs to be evaluated
against the safety-related scenarios already known,
to make sure it has been implemented as specified
and that its new behavior is now reasonable. A V&V
strategy for the known hazardous scenario must be
tailored to the identified system’s insufficiency and can
range from sensor error injections to scenario-based
simulations and in-the-field test drives.

The V&V of the system against known hazardous
scenarios is necessary, but not sufficient to
demonstrate that the system is safe. In the real world,
it is possible to encounter several variations of known
hazardous scenarios or even completely unknown
scenarios that can still trigger unreasonable behavior.
The V&V strategy should aim to demonstrate that the
residual risk of the system meets acceptance criteria
even for those unknown scenarios. Extensive and
long test drives alone are not sufficient to provide
statistically sufficient information about system
safety4, unless the product has already been released
to the market and used by a considerable number of
customers. On-the-field testing needs to be integrated
with other methods like5:

•	 Sensor noise injection

•	 Software-in-the-loop with randomized sequence
of scenarios

•	 Randomized inputs test (parameters value
selection can be inferred by a statistical analysis to
have evidence of their relevance)

•	 Tests of corner cases (cases in which one or more
parameter values are at the extremes of their
range challenging the capability of the system)

•	 Tests derived from field experience

•	 Analysis of worst-case scenarios

•	 Analysis of system architecture

Furthermore, once the product is released to the
market, additional monitoring activities need to be
carried out in a continuous way to guarantee that
the system’s safety is maintained over time. From
the broad use, new functional insufficiencies and
triggering conditions can be uncovered. Moreover,
the environment is continuously changing, e.g., traffic
regulations evolve, and the presence of autonomous
vehicles increases over time. This might pose new
threats that need to be identified and handled
accordingly. For such continuous monitoring, it could
be useful to equip cars with data loggers.

Typical observation elements to consider during the
operational phase are:

•	 Incidents that involve use of the relative AD
function

•	 Publicly available statistics relative to road safety

•	 Regulation modifications, evolution of behavior in
road and traffic contexts

Even though it can be argued that this kind of process
aimed to achieve safety is still human-based and,
so, error prone, it must be noted that it includes a
combination of approaches like risk assessment,
testing and evaluation, iterative continuous
improvement and ethical considerations that are
safety oriented. While no technology can be 100%
safe, these approaches minimize the risks associated
with the technology and ensure that it is designed with
safety in mind.

Conclusion

While both AD functions and human drivers use vision
to perceive the environment, plan vehicle motion
and use feedback mechanisms for corrections, AD
functions are in the advantage: They additionally
combine sensors, such as LiDARs and radars, can
rely on more accurate measurements, have hard
boundaries embedded in their control strategies to
guarantee safety and are not affected by cognitive
functions and attention levels.

With the increasing adoption of advanced
driver-assistance systems (ADAS) technologies, the
accidents caused by human error have already been
reduced and led to safer roads6, so the relation
is clear: Narrowing the human factor leads to
more safety. Carmakers are actively working on
safety-related activities and governmental regulations
are being enacted to norm the introduction of AD
functions on the market. Nevertheless, it is important
that such regulations hold car manufacturers
accountable for the safety of their self-driving
vehicles and that this goal stays as top priority in the
development process.

Moreover, there is an ongoing discussion7 about
how to shift legal responsibility and costs in case
of accidents involving autonomous vehicles. As
technology continues to evolve, it will be important
to establish clear guidelines and legal frameworks
to address these issues. But that will be a topic for a

References:

Authors Reference

1 https://www.iso.org/ ISO 26262, Road vehicles — Functional safety

2
National Highway Traffic Safety
Administration, U.S. Department
of Transportation

Safety of the Intended Functionality of Lane-Centering and Lane-
Changing Maneuver of a Generic Level 3 Highway Chauffeur System

3 https://www.en-standard.eu/
EN 50126-2:2017
Railway Applications - The Specification and Demonstration of Reliability,
Availability, Maintainability and Safety (RAMS)

4 Nidhi Kalra, Susan M. Paddock -
RAND Corporation

How Many Miles of Driving Would It Take To Demonstrate Autonomous
Vehicle Reliability?

5 Hesham Alghodhaifi, Sridhar
Lakshmanan

Autonomous Vehicle Evaluation: A Comprehensive Survey on Modeling
and Simulation Approaches

6 Daniel Lechner, Gilles Malaterre Emergency Manuever Experimentation Using a Driving Simulator

7 CA Flannagan https://rosap.ntl.bts.gov/view/dot/44159/dot_44159_DS1.pdf

Authors

Abdallah Bader

Riccardo Pinto

Vincenzo Campanale

Software Developer

Senior Software Developer

Software Developer

Abdallah Bader holds a master’s degree in mechatronic engineering from Polytechnic
of Turin and a bachelor’s degree in mechanical and mechatronic engineering from
Palestine Polytechnic University and has over six years of experience in various
engineering settings. During his masters he took part in H2Polito student team in
preparation for the Shell Eco-marathon challenge reviewing vehicles control and
researching AD commercial technologies. In his professional life, he has worked
on academic research, autonomous drive, robotics, manufacturing processes and
software development. He is currently an autonomous drive function developer at
Luxoft, where he develops AD functions reacting to road users and evaluates the
quality of the AD stack.

Riccardo Pinto is a technology industry professional with 8+ years of experience.
With a master’s degree in Artificial Intelligence and Robotics from Sapienza
University in Rome, and a post-master specialization in Industrial Automation
at the Politecnico of Turin, his skill set enabled him to work in diverse industries
spanning Robotics, Banking and automotive sectors. Currently, Riccardo holds the
position of Senior Software Engineer and Scrum Master, contributing to the field of
Autonomous driving. His focus centers on simulation, a crucial aspect of developing
advanced autonomous systems.

Vincenzo Campanale received a master’s degree in Mechatronics at Politecnico
di Torino and since then has built 10+ years of expertise in the development of
embedded systems for automotive applications. He first worked in the development
of power electronics for motorsport [ML1] hybrid applications until he pivoted to
software engineering for autonomous driving developing environmental modeling
for motion planning applications.

10

#16/2023

1110

Problems of
event-based
communication in
micro frontends

Micro frontends are quickly becoming
the preferred approach to building
enterprise-grade user interface
applications on the web. They are
the adaptation of the microservices
architecture but on the UI side, and so
this comes with the advantages that
you would expect: Decoupling, partial
deployments, increased development
velocity and error isolation.
However, current techniques for
intra-UI components communication
are not suited to handle data sharing,
notifications and subscriber-publisher
relationships that are often found in
the context of an application based on
micro frontends. Specifically, classic
event-driven communication between
micro frontends (i.e., using browser
APIs) will lead to feature disruption,
decreased perceived performance and
poor user experience.
We’ll discuss the advantages of using
micro frontends and the mentioned
issues in detail. Additionally, you’ll get
to learn the solution to those issues
and how to implement a framework
agnostic event-based communication
system for micro frontends.

12

#16/2023

12 13

The very good parts

At Luxoft, we quickly realized the advantages of using micro frontends over a monolithic architecture and we put
them to good use: We built multiple very large enterprise-grade UI applications on the web. This improved our
development velocity on the UI greatly, and it suited us well because of how many teams we have. Additionally,
because micro frontends are supposed to be decoupled, our applications could now be split based on domain or
feature, which in turn facilitated the creation of full-stack teams of developers: One microservice and one micro
frontend for each team, like below.

Our teams are now independent of each other from the perspective of development and feature introduction.
The only contract each micro frontend team adheres to is to not modify interfaces already exposed and in use
by other components of the app. Besides that, every team has great flexibility, and this allowed for fast feature
development and deployment.

There are also other advantages that are self-evident: integration testing is now done by partially deploying one
single micro frontend in a test environment; a micro frontend can be quickly integrated and used in other existing
applications; failures are not propagated to the entire application.

Splitting systems with micro frontends and microservices

The problem: Event-based communication
between asynchronous components

Certain problems arise when MFEs need to communicate with each other, and we discovered this in our own
applications.

First, a bit of background regarding how an MFE-based application might be organized from an architectural
perspective: micro frontends are not pages. Different micro frontends can compose a page, each representing
a specific component. For instance, in a networking application, one MFE might display information regarding
inbound and outbound traffic of a network, while another might display the constituent objects of the network
(switches, VMs, hypervisors, etc.).

Fr
on

te
nd Team

inspire
Team

search
Team

product
Team

checkout

Ba
ck

en
d

D
at

ab
as

e

Mission: Helps the
customer discover

products

Mission: Quickly
find the right

product

Mission: Present
the product

Mission: Provide
a good checkout

experience

14

#16/2023

1514

One characteristic of micro frontends is that each is its
own bundle file, meaning the user’s browser will finish
downloading them from the server at different points
in time. This asynchrony has certain advantages:

•	 Asynchronous loading of micro frontends enables
the application to be reactive as soon as possible
to user interactions

•	 Network and hardware load are distributed over
a certain timeline, which increases perceived
performance

•	 Asynchronous loading avoids the head-of-line
blocking problem if a micro frontend requires an
abnormally large amount of time to load

So, the order in which the bundle files are downloaded
is non-deterministic. Thus, the same load order on
each refresh is not guaranteed. The load times may
vary from MFE to MFE depending on size, network
characteristics, whether a server is overwhelmed, load,
and other factors.

Why is this relevant? In a complex UI application (e.g.,
an enterprise one) it is wise to assume that operations
such as scaffolding, data binding, data sourcing,
and information sharing between components will
take place along the lifecycle of the application. The
problem in the context of MFEs arises when these
operations take place at the time the former are
initialized and are done through communication via
events. Even though MFEs are decoupled, some need
to communicate with each other.

What happens when a subscriber MFE was not yet
initialized at the time a publisher MFE has fired an
event? Exactly nothing.

Two MFEs on the same page

Browser

Micro frontend 1 Micro frontend 2

Subscriber MFE missing events from publisher MFE

The flow above starts when an application composed
of multiple MFEs is accessed in the browser. There
are two vital components: An MFE that fires an event
(i.e., a publisher), an MFE that registers a listener for
that event (i.e., a subscriber). Both components are
initialized and loaded at different points in time, more
specifically: the publisher is loaded faster than the
subscriber. This means that the event the publisher
has fired was not intercepted by any event listener. So,
what happens is...nothing. The event is freed by the
garbage collector, so the object cannot be processed
by any other component in the application.

This is a major problem, and it cannot be solved by
existing browser APIs. Imagine a page composed
of multiple micro frontends, there is a publisher-
subscriber relationship between two of them, and the
subscriber performs a critical feature whenever an
event is fired from the publisher. If the events are not
intercepted:

•	 Features will be disrupted

•	 User experience will suffer

•	 Users will find the application performing poorly
and unresponsive to their inputs

Bad solutions

Let’s think about a way to solve this problem in an
inappropriate manner. There are a few possibilities:

1.	 Wait for subscribers to be loaded before firing any
event

2.	 Ditch events and use a global state to share data

3.	 Remove any kind of communication between
MFEs

Let’s see why all of these three are impractical.

First things first: Waiting for all subscribers to be
present before publishing any event. This is obviously
detrimental to perceived performance, and it destroys
the advantage of asynchronous MFE loading. Not only
that, micro frontends can be both subscribers and
publishers. The dependencies that MFEs will have
between themselves will be hard to manage, which
defeats the purpose of compartmentalization.

Second: Ditching events and using a global state for
data sharing and interaction between two MFEs. This
creates coupling between MFEs and subsequently,

 teams. “Why is your MFE modifying the state like
this?!” is a question you and your colleagues will
ask very frequently if you take this approach to
communication. Micro frontends should be as
decoupled as possible, but full decoupling is not
always feasible, which leads us to the next point.

Third: Remove any kind of communication between
MFEs. For a non-mediocre application, eliminating
communication is not practical. This is because
features (i.e., MFEs) depend on each other. There
are relationships between the components of a
system such that interaction with one of them will
trigger reaction in another. At Luxoft, in each of our
MFE-based applications there are these kinds of
relationships: Click on an entry in a table -> display
detailed information regarding that entry in another
part of the page. A pan and a stove are very different
objects, but you can’t cook your pancakes without one
or the other.

Load
app

MFE 1

Fire
event

MFE 2

Loaded and
rendered

Loaded and
rendered

Register
event

listener

Event is not
processed

Stop

Ti
m

e

From a high-level, our shopping list has a queue and an arbitrary number of events in that queue. And we also
need a place to hold listeners meant to process the events in the queue. Additionally, we need a method to match
events to listeners, which can be done using some identifier or other. So, our architecture would look like this:

Messaging system architecture with event queue and listeners

Notice that an event can be processed by multiple listeners. After being processed by every appropriate listener,
the event can be dequeued.

But wait, how should an event look like i.e., what’s its interface?

const event = {
 identifier: «unique:id»,
 payload: {
 awesomeSciFiSeries: «Dune»
 }
}

16

#16/2023

1716

The solution: Event queues

The solution to this problem consists of using event
queues.

Since micro frontends are the adaptation of
microservices to the UI, we can borrow patterns from
one to the other. Event queueing already existed as a
concept and in practice on the backend, not so much
in the context of UI. Even so, this technique can be
used to solve our problem in the most elegant way.

We need to modify our previous flow where the
subscriber didn’t process the event by adding a
few more steps. We store the event in a queue, so
events are propagated equitably (FIFO). This keeps a
reference to the event and thus it will no longer be
freed by the garbage collector. We match the listener
to the event in the queue. Finally, it is processed by
the listener and dequeued.

Subscriber MFE correctly intercepting events from
publisher MFE

The implementation

Implementing a messaging system that does this can be done using plain JavaScript. Making it such that every
MFE-based application can use it regardless of the underlying UI framework.

First things first, we need a way to instantiate our messaging system. A class will do just fine.

Second, we need a queue.

Third, we need a structure that will hold our listeners. Without listeners, no event will be processed. You’ll notice
that this pattern that we’re using is very similar to how browser events API works. This is deliberate, we don’t need
the overhead of learning to use a complex tool.

Ti
m

e

Load
app

MFE 1

Fire
event

MFE 2

Loaded and
rendered

Loaded and
rendered

Register
event

listener

Process
event

Dequeue
event

 eventld2

listener1 Callback

Callback

Callback

Callback

listener2

listener3

listener4

 eventld1 eventld1 Fire event
(Enqueue) eventld3

Process
event on

all listeners
(dequeue)

// We’ll call our messaging system «Broker»
class Broker {
 constructor() {
 // Queue that should store our events such that we have a reference to them
 this.queue = [];
 // Object that will hold our listeners
 this.listeners = {};
 }
}

const event1 = new CustomEvent(«event1»);
obj.addEventListener(«event1», (event) => ...);

class Broker {
 // ...
 registerListener(eventId, callback) {
 const listenerId = getRandomId();
 if (typeof this.listeners[eventId] !== «object») {
 this.listeners[eventId] = {
 [listenerId]: callback
 };
 } else {
 this.listeners[eventId][listenerId] = callback;
 }
 return listenerId; // return an identifier that can be used to unregister the listener afterwards
 }
// ...

class Broker {
 // ...
 removeListener(eventId, listenerId) {
 delete this.listeners[eventId][listenerId];
 }

// ...

Firing events

Now let’s take a look at how our messaging system will fire events. Yes, we need a method.

More specifically, we need a method that enqueues an event. The method receives as an argument an event object
adhering to the interface that we defined above.

You might notice that something is missing though. Events and listeners exist in our Broker class, but there’s
no mechanism matching the two! We need to write some code that runs a listener’s callback when an event is
intercepted.

class Broker {
 // ...
 fireEvent(event) {
 this.queue.push(event);
 }
// ...

18

#16/2023

1918

All well and good, but instantiating empty objects is basically useless. We need some more operations to make this
system actually useful: a method for firing events, a method for registering listeners, and a way for the two to be
matched such that events are processed by the appropriate listeners.

Registering listeners

Before writing the code for firing events, we need to decide how the messaging system will match listeners to
events. We can take some inspiration from the Custom Events API already present in browser environments. When
instantiating a custom event you can specify its type, which is a string that can be used to identify the event when
registering a listener.

Adapting this approach to our own case, we can make it such that each fired event will have a string identifier
specified by the developer. Any listener wishing to intercept the event need only know the identifier of the event:

this.listeners is a map that holds listeners for each possible event in the application. When an event is fired, Broker
can check whether listeners exist for said event and run their callbacks. We’re also returning a listener identifier to
be used when wanting to remove the listener (always unsubscribe, don’t waste memory in your applications).

A method for removing a listener could look as such:

Processing events

Let’s think when our messaging system needs to process events.

When an event is at the head of the queue.

Yes! And there’s one more situation when events should be processed. The one we’ve been trying to solve from
the beginning: we need to make sure we process appropriate events when a listener is registered. This is because
events can be enqueued before a listener for them is registered, just as we discussed in the solution section.

We need to fire a notification whenever an event is enqueued or when a listener is registered. We can start
processing the events in the queue. When no events are in the queue, we stop processing until we get another
notification. A function that would take care of processing events could look like so:

class Broker {
 constructor() {
 // ...
 // flag to specify if any work is done at the moment
 processing = false;
 // ...
 }
 process() {
 // if the queue is empty, processing is no longer done
 if (this.queue.length === 0) {
 this.processing = false;
 return;
 }
 this.processing = true;
 // take the first event in the queue
 const event = this.queue.shift();
 // call every callback for the event
 if (this.listeners[event.identifier]) {
 for (let callback of
Object.values(this.listeners[event.identifier])) {
 callback(event);
 }
 }
 // call function recursively
 this.processing = this.process();
 }
// ...

It controls a flag that tells whether the messaging system is processing events at the moment or not. This is useful
because it prevents this.process() from being called without needing to. So, when firing an event or registering a
listener, we can look at the this.processing flag before starting actual processing:

class Broker {
 // ...
 registerListener(eventId, callback) {
 // ...
 if (!this.processing) {
 this.process();
 }
 // ...
 }
 fireEvent(event) {
 // ...
 if (!this.processing) {
 this.process();
 }
 // ...
 }
// ...

We’re done. This should ensure events are delivered regardless of when they were fired.

But what happens when an event has no listeners?

You may have noticed that inside of this.process() we are not handling the case where an event has no listeners.
This is more up to the specific application that uses the messaging system, but reliability can’t be ignored. To solve
this problem, we’ll have to make it such that an event does not block the queue. In other words, we need to think
of a way to avoid a head-of-line blocking problem.

Remove the events if they won’t be processed.

We’ll do something of the sort. An event will stay a maximum of 3000 milliseconds in the queue. After that time
elapses, the event will be dequeued and processing will continue. Let’s modify our this.process() function to do just
that.

class Broker {
 constructor() {
 // ...
 // specify whether the head event is set to be dequeued or not
 this.eventDequeuingInProcess = false;
 // ...
 }
 // ...
 async process() {
 // ...
 const event = this.queue[0];
 if (this.listeners[event.identifier]) {
 // reset dequeuing flag such that an event is not
 // dequeued immediately if there are no listeners
 this.eventDequeuingInProcess = false;
 // deque event since we know that there are listeners for it
 this.queue.shift();
 // ...
 } else {

20

#16/2023

2120

 // if there are no listeners, stop processing for 3 seconds,
 // then try again
 if (!this.eventDequeuingInProcess) {
 this.eventDequeuingInProcess = true;
 await this.sleep(3000);
 } else {
 // if there are no listeners, and we already waited
 // 3000 milliseconds, dequeue it
 this.eventDequeuingInProcess = false;
 this.queue.shift();
 }
 }
 // ...
 }
 // There’s no other function that
 // allows a program to stop execution temporarily in
 // JS browser environments
 sleep(ms) {
 return new Promise(resolve => setTimeout(resolve, ms));
 }
// ...

Let’s walk through what’s happening here:

1.	 Start processing when either an event is fired or
when a listener is registered

2.	 Take event at head of queue and start processing

3.	 If event has listeners run each callback, dequeue
the event immediately

4.	 If event has no listeners, stop and try again or
dequeue it depending on if we already stopped
and waited or not

This is possible because this.process() is called
recursively.

Graphically, the flow looks like so.

Flow of solution for HOLB problem using sleep

Conclusions

References

Now you know how to solve the problem of event-based communication between events. Congratulations on
learning something new! You can also adapt the solution to your specific needs since it is written in plain JS. A good
improvement would be to use TypeScript. Also, remember to use the same instance for all MFEs that communicate
with one another.

At Luxoft, this technique of event queueing solved many of our problems in MFE communication. Hope the same
will happen for your apps!

[1] Taibi, Davide, and Luca Mezzalira. “Micro-Frontends: Principles, Implementations, and Pitfalls.” ACM SIGSOFT
Software Engineering Notes 47.4 (2022): 25-29;

[2] Geers, Michael. Micro frontends in action. Simon and Schuster, 2020.

Author

Anghel Paul-Lucian
Developer

Anghel Paul-Lucian finished his M.Sc. in software engineering in 2023. His passion
and technical focus lie in UI technologies, especially in the web ecosystem and the
new concept of micro frontends. At Luxoft Romania he implements scalable and
performant micro-frontend based applications and libraries.

22

#16/2023

2322

Event
fired

Listener
registreted

Start
processing

Listener
exist

Already
waited

Wait
3000ms

Run callbacks
of listeners

Dequeue
event

Yes

Yes

No

No

Stop

Automating 5G
and O-RAN testing

4G revolutionized data throughput and latency,
offering simplified architecture and scalable
networks; 5G propels us even further. With latency
below 5 ms and remarkably higher speeds, it unlocks
real-time processing, enabling AI/ML in diverse
scenarios: intelligent transportation for smart cities,
energy-efficient homes, secure autonomous vehicles,
immersive augmented reality and Industry 4.0/5.0
innovations.

However, realizing 5G’s potential demands a shift.
Dynamic open architectures are needed for the
radio access network (RAN), contrasting with legacy
networks that were static and homogenous. This
shift enables power reduction, self-healing networks,
AI adaptations and customized radio deployments.
The promise of open radio access network (O-RAN)
lies in cost reduction and revenue generation,
though the complexity mandates thorough testing
and real-time validation, crucial in a multi-vendor,
disaggregated ecosystem.

Simultaneously, the 5G Core adopts a cloud-based
microservices structure, decoupling hardware
from software. Each core function becomes a
plug-and-play service, facilitating third-party vendors
to provide solutions in a diverse multi-vendor
approach. A parallel transformation unfolds in the
RAN domain, as open RAN dismantles barriers for
purpose specific RANs. Its chief advantage is fostering
an open, multi-vendor radio access ecosystem,
empowering operators to diversify supply chains and
tailor innovative solutions while driving cost efficiency
through competition and resource sharing.

However, these prospects are met with challenges
— multi-vendor compatibility, standards adherence,
and, crucially, real-time processing and data volume
performance. Rigorous testing across levels is
imperative to meet functional, security, scalability and
resilience demands. This calls for frequent, stringent
testing and validation, exceeding those of prior
network standards.

The list below provides a streamlined version of
the general steps required in validating an O-RAN
network. Even simplified, this will require sophisticated
network tools and significant effort to set up and tear
down environments.

1.	 Planning and preparation:

•	 Define objectives — functionality, performance,
scalability, interoperability, security

•	 Create scenarios — diverse test cases, edge
scenarios for comprehensive coverage

•	 Gather resources — hardware, software, tools for
effective testing

2.	 Functional testing:

•	 Validate RAN functionality — radio resource
management, handover, cell selection, mobility

•	 Verify RIC functionality — RIC-RAN interaction
focusing on E2/O2/A1 interface compliance

•	 xApp — in predefined scenarios e.g. validating
behavior for QoS optimization, load balancing,
energy saving, network slicing control, etc

•	 rApp — validate non real-time behaviors such as
policy optimization or network healing

3.	 Performance testing:

•	 Capacity and throughput — user loads, traffic
handling capabilities

•	 Latency and delay — response times of xApps,
adherence to performance thresholds

•	 Covergence time for machine learning algorithms
employed in rApps

•	 Quality of service (QoS) — service prioritization,
predefined policies

4.	 Interoperability testing:

•	 RAN-RIC interface — effective communication,
control behavior

•	 Network element interactions — seamless
engagement with core networks, orchestrators
and aggregated behavior and interactions with
x/rApps especially for 3rd party components
across versions.

5.	 Security testing:

•	 Vulnerability assessment — identifying
weaknesses, susceptibility to breaches

•	 Authentication and authorization — proper
enforcement, preventing unauthorized access

6.	 Scalability testing:

•	 Evaluate scalability — network load, user count,
traffic volume handling

7.	 Resilience and redundancy testing:

•	 Assess resilience — recovery from failures,
effectiveness of redundancy

8.	 Regression testing:

•	 Periodic validation — new updates, changes
impact assessment, existing functionalities

9.	 Negative Testing:

•	 Evaluate behavior induced by protocol errors or
invalid message parameters

10.	 Documentation and analysis:

•	 Record results — document outcomes, identified
defects

•	 Analyze outcomes — evaluate against criteria,
performance targets

24

#16/2023

24 25

11.	 Test validation and sign-off:

•	 Verify compliance — RAN, RIC pass required tests,
meet acceptance criteria

•	 Final report — comprehensive overview,
recommendations for improvement

While there is one logical architecture for O-RAN
solutions, there are multiple implementation and
deployment scenarios. A complete testing solution
must be flexible to adapt to those scenarios so that
each one may be instantiated, configured, engineered
and tested. The configurations range from a fully
disaggregated set of functions as per the O-RAN
alliance to any number of bundles of CU/RU/DU and
near and non real-time RIC and orchestration.

Luxoft’s Software Defined Lab (SDL) provides and
supports an end-to-end testing environment that
includes:

•	 Cloud solutions — this includes public cloud,
private cloud, hybrid cloud and multi-cloud
solutions

•	 On-prem solutions — including virtualized and
non-virtualized data centers, COTS and discrete
vendor-specific components (VNFs and PNFs) and
test simulation/emulation equipment

With SDL used to manage an O-RAN validation
environment, it provides a software test automation
environment with built-in DevOps features targeted at
service providers, operators, virtual network functions
(VNF) vendors and network equipment manufacturers
(NEMs). The following are its key features:

•	 An operator or a VNF vendor can comprehensively
model an operation of an NFV-based network
using multiple 3rd party VNFs

•	 The operator can compare, evaluate, model,
test and engineer the capacity and performance
of a solution involving components in multiple
infrastructures (cloud, on-prem, virtualized,
physical)

•	 VNFs will be automatically deployed in a desired
configuration that implements a required service
chain or network services (the SUT)

•	 The integrated test automation environment
orchestrates and executes traffic and functional
tests against the assembled VNF configuration

•	 SDL can test across physical network function
(PNF) and virtual network function boundaries for
operators as they transition various portions of
their services to NFV

•	 The same system can be used to test existing
physical network functions (PNFs) using
cost-effective virtual test tools and simulators and
can then be used to validate/compare/contrast
the behavior of those network functions as they
are transitioned to VNFs

At Luxoft, we utilize a combination of test capabilities
available from the community and from our partners
including Viavi, Spirent and others; SDL is not
directly a testing tool and is agnostic with regards
to any testing tools you may use that can be placed
under software control. These tools along with

Luxoft’s proven industry leading practice for telecom
component and system validation, test automation,
and our unique Software Defined Lab solution enable
us to achieve a cost effective, yet comprehensive
solution for the evaluation, integration, validation,
engineering and productization of the components
necessary for your RAN and RIC solutions.

Whether you’re evaluating and verifying RAN/RIC
vendors to work with your existing solution, verifying
your RAN/RIC solution for use with other vendors’
networks, implementing a traditional RAN/RIC or
transitioning to C-RAN, or developing your own
RAN/RIC solution and need an experienced partner to
develop and customize your solution, Luxoft has the
team, tools, ecosystem and experience to ensure the
success of your project.

Authors

James Hopson

Mihnea Ionescu

 Technical Product Manager

Senior Software Engineer

James has been a Solutions Architect and Product Manager in telecommunications
operations and virtualization for more than 30 years, most recently specializing in
the areas of network and cloud solutions, NFV testing and test automation. He is the
CTO for networking and cloud solutions at Luxoft and a solution manager in Luxoft’s
Technology, Media and Telecom organization. James is responsible for Luxoft’s
Software Defined Lab Services Accelerator which is an automated configuration and
test, environment management and modelling framework for private/public/hybrid
cloud, NFV, hybrid and physical environments.

With over 15 years of software development experience, Mihnea’s primary area of
focus lies in wireless technologies, including WiFi, 4G and 5G. He is actively engaged
in the development of Open RAN testing solutions and 5G radio access network
modeling.

26

#16/2023

2726

Practical
introduction to Java
multithreading

What is a thread?

Why do we need
multithreading?

Concurrency vs parallelism

Thread is a flow of execution inside a process. In Java,
each process has a main thread created by the JVM.
When you create a program that prints Hello World
to screen, the JVM will create the main thread, which
takes care of executing the instructions you’ve written.

All threads created within the same process can access
shared data/resources.

Multithreading allows us to achieve better
utilization of the machine by running multiple tasks
concurrently/in parallel. And thus, we boost the
performance of the application.

Multithreading can be applied in a way to improve the
throughput of the system. It can be used to decrease
the latency taken by a lengthy operation. Also, it can
enhance the responsiveness of applications.

•	 Concurrency means multiple tasks/subtasks
running in overlapping time periods. They will not
run in parallel, but they will take turns on the CPU
for execution.For example: Doing multi-tasking
on a single-core computer. In this scenario, the
scheduler will do context switching between the
two tasks, which means: The scheduler will assign
the CPU to task1 for some time, then move it out
and assign the CPU to task2, and so on until the
two tasks are completed.

•	 Parallelism means multiple tasks/subtasks
running in parallel, they are not overlapping.
For example: Running two tasks on a multi-core
computer, and each CPU gets assigned to one
task. In this case, each task is scheduled to run
independently on a separate CPU.

As an example: when you open a video player
on a computer, this application makes use of
multithreading. At least one thread is handling video
streaming. And at least one other thread handling
UI interaction. If you click on any button, it does the
expected action.

Thread vs process

When you run a program, a process gets created for it. This process has all the details needed for the program to
run. At least one execution thread is created within the process to execute the instructions.

In the multithreading model, you create multiple threads within the process. These threads are handling program
execution concurrently/in parallel.

Below is a visualization of threads and processes:

Process Thread

Size Processes are more heavyweight Threads are more lightweight, it is a
subprocess inside a process

Communication
Communication between
different processes is slower than
communication between threads

Faster, since threads are executing
in the same process space

Resources Processes use more resources Threads use less resources

Task 1

Task 1

Task 2

Core-1

Core-1

Core-2

Concurrency

Time

Parallelism

Task 2 Task 1 Task 1 Task 2

Process

Thread-1 Thread-2

Instruction
pointer

Instruction
pointer

Stack Stack

Application
code

Data

Files

28

#16/2023

29

In general, creating a thread within a process is much faster, and less resource consuming than creating a new
process.

Threads within the same process can share data with each other. Hence, we should apply proper synchronization
strategies to coordinate between threads, ensure validity of results, and ensure performance.

Without the proper strategies and implementation, we will get the wrong results. Even — in some scenarios —
single-threaded implementation becomes more performant than multithreaded implementation.

This can happen for several reasons including creating an enormous number of threads which is more than
the number of CPUs, especially when these threads are doing a lengthy operation. Or due to inappropriate
implementations like running dependent threads in a way that makes their execution occur sequentially rather
than concurrently.

Keep in mind that context switching between threads is an operation that comes with a cost. If in a multithreaded
implementation, the threads are executing sequentially, the performance would be worse than a single-thread
implementation because of the added overhead of context switching between the threads.

All this means is that we should carefully think about how multithreading will solve the problem efficiently and
implement accordingly in order not to find ourselves in the above situations.

Thread lifecycle

During the life of the thread, it can have one of the states below:

New: Thread is created but has not started yet.

Runnable: Thread is scheduled for running and will be assigned to a CPU according to the scheduling criteria.

Running: Thread was assigned to a CPU by the scheduler, and instructions in the threads are being executed.

Waiting: Thread is put to sleep for a specific time (timed wait). Or if the thread is waiting for other threads to
complete execution. In such cases, the thread is in wait state.

It will not be picked up by the scheduler until it leaves this state and goes to Runnable state (when the waiting time
is over, or when other threads complete execution).

Blocked: When thread is waiting on a busy resource to be released. After the resource becomes available, the
thread acquires it and goes back to runnable state as. The thread is ready to be picked up by the scheduler to
continue execution.

It will not be picked up by the scheduler until it leaves this state and goes to Runnable state.

Terminated: When the thread completes executing all the instructions, it terminates.

Let’s get our hands dirty with code!

In Java, we have two ways of creating threads:

•	 Thread class: We can extend the Thread class and override @run() method. However, in this way, we cannot
extend any other class.

•	 Runnable interface: We can implement Runnable interface and override @run() method. Using this way has
an advantage because we can extend other classes if we want.

PrintThread class extends Thread class. This class just prints the name of the currently executing thread.

Driver class that contains the main method to run our application.

Example 1: Extending Thread class:

public class PrintThread extends Thread {
 @Override
 public void run() {
 // print the name of the running thread
 System.out.println(«Thread executing: « + getName());
 }
}

public class Driver {
 public static void main(String... args) {
 // creating the thread - thread has not started yet
 final PrintThread printThread = new PrintThread();

 // starting the thread
 printThread.start();

 // main thread is waiting for printThread to complete execution
 try {
 printThread.join();
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }

 // print the name of the main thread - main
 System.out.println(«Thread executing: « + Thread.currentThread().getName());
 }
}

New Thread
started

Thread
is created but has not been
started by the program yet

Scheduler has assigned
thread to a CPU

Scheduler moved thread back to
Runnable state to assign CPU for

other threads

Resource becomes available
for the thread and it can

continue execution

When thread is monitoring a
certain resource to be released

and waiting for it

Thread sleep time is over or other threads finished execution

When thread sleeps for a
certain time or waits for other

threads to finish execution

Runnable

Blocked

Running Terminated

Waiting

30

#16/2023

3130

In the main method, we’ve used printThread.join() to wait until the created thread completes its execution.
Otherwise, the main thread will not wait and will terminate which will terminate the whole application (even if the
created thread has not finished execution by that time).

Expected output:

Example 2: Implementing Runnable interface:

PrintRunner implements Runnable interface. Using this way gives us the chance to extend another class if we
want.

Driver class that contains the main method to run our application.

Expected Output:

Thread executing: Thread-0
Thread executing: main

public class PrintRunner implements Runnable {
 @Override
 public void run() {
 // print the name of the running thread
 System.out.println(«Thread executing: « + Thread.currentThread().getName());
 }
}

public class Driver {
 public static void main(String... args) {
 // creating the thread - thread has not started yet
 final PrintRunner printRunner = new PrintRunner();
 final Thread printThread = new Thread(printRunner);

 // starting the thread
 printThread.start();

 // main thread is waiting for printThread to complete execution
 try {
 printThread.join();
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }

 // print the name of the main thread - main
 System.out.println(«Thread executing: « + Thread.currentThread().getName());
 }
}

Thread executing: Thread-0
Thread executing: main

Is multithreading always the best solution?

Given all the advantages of multithreading over single-threading, why don’t we use multithreading to solve all our
problems?

The answer is: there are scenarios where single-threaded implementations are more performant than
multi-threaded implementations.

Remember that multithreading comes with the cost of context switching between the application threads. And this
operation has an overhead.

Implementing a multithreaded solution for a rather simple problem usually makes the performance worse.

To demonstrate that, let’s rely — in the following example — on latency as the metric to compare between
multithreaded and single-threaded solutions, and assess the performance of the two implementations.

The problem we want to solve is trivial: We want to double all items in an array of integers.

Single-threaded solution:

Driver class that contains the main method to run our application.

import java.util.stream.IntStream;

public class Driver {
 public static void main(String... args) {
 // generating a sequence from 0 to n
 final int[] numbersList = IntStream.range(0, 1000).toArray();

 final long startTime = System.nanoTime();

 for (int i = 0; i < numbersList.length; i++) {
 numbersList[i] = doSomething(numbersList[i]);
 }

 final long endTime = System.nanoTime();

 System.out.println(«total execution time: « + (endTime - startTime));
 }

 private static int doSomething(final int number) {
 return number * 2;
 }
}

32

#16/2023

3332

Multithreaded solution:

ArrayManipulatorRunner that duplicates the items in the array.

Driver class that contains the main method to run our application.

public class ArrayManipulatorRunner implements Runnable {
 private final int startIndex;
 private final int size;
 private final int[] numbersList;

 public ArrayManipulatorRunner(final int startIndex, final int size, final int[] numbersList) {
 this.startIndex = startIndex;
 this.size = size;
 this.numbersList = numbersList;
 }

 @Override
 public void run() {
 for (int i = startIndex; i < size; i++) {
 numbersList[i] = doSomething(numbersList[i]);
 }
 }

 private int doSomething(final int number) {
 return number * 2;
 }
}

import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

public class Driver {
 public static void main(String... args) {
 // generating a sequence of integers from 0 to n
 final int[] numbersList = IntStream.range(0, 1000).toArray();
 final List<Thread> threads = new ArrayList<>();
 final int batchSize = 100;
 int index = 0;

 final long startTime = System.nanoTime();

 // breaking down the list and distributing work among threads
 while (index < numbersList.length) {
 // create the threads
 threads.add(
 new Thread(new ArrayManipulatorRunner(index, index + batchSize, numbersList))
);

 index += batchSize;
 }

 // start the threads
 for (Thread thread : threads) {
 thread.start();
 }

 // main waits for all the threads to complete execution
 for (Thread thread : threads) {
 try {
 thread.join();
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }

 final long endTime = System.nanoTime();

 System.out.println(«total execution time: « + (endTime - startTime));
 System.out.println(«Thread created: « + threads.size());
 }

In the multithreaded implementation, we’re breaking down the array into smaller subsets, and each subset will be
handled by a different thread. The size of the subset will be determined by batchSize variable.

Let’s do some tuning and increase the size of the batch handled by one thread by making the batchSize directly
proportional to the load.

From the above, we can see that single-threaded implementations outperforms multithreaded ones in situations
like when the problem is simple, or when the data size is quite manageable.

However, multithreaded implementations outperforms single-threaded ones in situations like when the load
becomes enormous, or when the problem is not trivial, or when the process handled by a thread is a lengthy
operation, so it would be faster to execute concurrently/in parallel.

Results:

Results:

Load (array size) Latency in single-threaded (ms)
Latency in multithreaded (ms)

(Each thread is handling a batch of
100 records)

1000 0.0297 7.9933

100000 1.4371 98.493

10000000 6.2862 8749.7436

100000000 35.2813 90527.164

1000000000 292.8242 very long

Load (array size) Latency in single-threaded (ms) Latency in multithreaded (ms)

1000 0.0297 7.9933 – batchSize: 100

100000 1.4371 2.3354 – batchSize: 1000

10000000 6.2862 25.8895 – batchSize: 1000000

100000000 35.2813 48.2017 – batchSize: 10000000

1000000000 292.8242 282.7212 – batchSize: 100000000

34

#16/2023

3534

Conclusions

•	 Multithreading helps boost the performance of applications.

•	 It is much less expensive to create a thread than creating a new process.

•	 Synchronization between threads should be kept if they are sharing the same resources.

•	 There are two ways of creating threads in Java; implementing Runnable or extending Thread.

•	 Debugging multithreaded applications requires more effort than debugging single-threaded applications.

•	 Not all problems should be addressed using a multithreaded approach. Proper analysis should be made
beforehand to assess whether a multithreaded solution would be better or not.

•	 Multithreading comes with an overhead, if not used properly for the right problem, the results would be worse
than single-threaded approach.

•	 Consider the computational resources available when considering a multithreaded approach.

Author

Mahmoud Yehia
Senior Software Engineer at Luxoft

Mahmoud has +5 years of professional work experience. He has worked on
interesting projects throughout his career. Mahmoud is an ex-IBMer, ex-Amazonian
and now proudly a Luxofter!
His main experience lies in backend development. He’s eager to learn more about
clean coding, optimization techniques, software architectures and exploring AI.

3636

<GROW YOUR CAREER
BIT BY BIT/>

Join Luxoft now!

Workflow
orchestration
and integration:
Streamlining process
automation
In the current complex business environments leveraging IT, the management
and automation of processes across various software applications and interfaces
are necessary for operational efficiency and competitiveness. This article explores
the significance of workflow orchestration in handling cross-system processes and
examines the role of integration in process automation.

Introduction

The evolution of process automation: The business
landscape has been greatly reshaped by various
technological advances. Automation has always
represented an opportunity to create value from the
balance of the classic paradigm of people, process and
technology.1 Process automation’s progression echoes
this transformation, proceeding from manual paper-
based workflows to complex automation solutions
driven by digital technologies and the Internet. The
shift from manual processes to automation has
been fuelled by the need for organizations to remain
competent, reactive and competitive in today’s
dynamic business environment.

Automation started with simple tools and scripts
for streamlining repetitive tasks. As technology
matured, these tools evolved into more intricate
systems capable of managing complex workflows.
The introduction of Enterprise Resource Planning
(ERP) systems brought centralized data management,
emphasizing the necessity of sychronization among
disparate systems.

ERP systems could handle a variety of back-office
processes like human resources and accounting, as
well as front-office processes. Yet with ERP solutions
organizations could not focus on improving the
efficiency of their business processes. For that, more
sophisticated integration and planning tools were
needed.2 This paved the way for the emergence of
workflow orchestration and integration.

The role of workflow orchestration and integration:
In today’s business world, characterized by varied
software applications, databases, and APIs, workflow
orchestration and integration are essential for
successful process automation. While these terms
are often used interchangeably, they address distinct
aspects of the automation process.

•	 Workflow orchestration: Orchestration involves
coordinating and managing multiple tasks and
processes to achieve specific business outcomes.
Workflow orchestration is the automation of a
workflow or multiple tasks. In other words, it
handles multiple automated tasks to execute a
single significant process or workflow.3 Workflow
orchestration ensures correct task sequencing,

•	 Integration: Integration connects different
systems, applications, and databases to enable
data and process interoperability. Data silos
and unnecessary data entry are eliminated with
effective integration, ensuring unfettered data
flow. Data transformation methods, middleware,
and APIs can all be used to integrate systems.

For process automation to be seamless and effective,
integration and workflow orchestration must operate
together. While integration ensures the relevant data
is available for certain tasks, workflow orchestration
provides optimal task execution sequence.

manages dependencies and enables seamless
data flow.

Understanding workflow
orchestration

Workflow orchestration is the end-to-end
management of people, digital workers, systems,
and data in a process.4 It goes beyond simple task
automation by establishing orderly flows that are

in line with corporate goals. Without having to deal
with complicated technological issues, orchestration
solutions offer visual interfaces for planning,
monitoring, and changing workflows.

Different software programmes, databases and
services are necessary in today’s organizations.
Workflow orchestration is excellent at managing
these cross-system procedures, which span several of
these platforms. It makes sure everything functions in
harmony.

Consider an e-commerce business processing an
order that requires coordination of delivery, payment
processing, customer notifications and inventory
management. Workflow orchestration synchronises
these steps, ensuring error handling, orderly
advancement, and structure preservation even in the
face of unanticipated events.

Benefits of effective workflow orchestration: A
Forrester report noted that platforms capable of
handling process orchestration allows organizations
to add and manage digital workforce capacity on
demand, with the flexibility and agility needed to scale
and optimize service levels. This frees up bandwidth so

#16/2023

3938

employees can move away from mundane, repetitive
tasks and focus on the high-value, strategic work,
improving employee satisfaction and productivity.5

The benefits of implementing effective workflow
orchestration are substantial:

•	 Enhanced efficiency: Orchestration follows
predefined paths, minimizing manual intervention
and mistakes for quicker, more consistent
outcomes.

•	 Optimized resource use: Both human and
technical resources are used optimally. Tasks
trigger as needed by the right resources.

•	 End-to-end visibility: Orchestration offers an
overview of the entire process, enabling better
command and management by identifying
bottlenecks or deviations.

•	 Scalability: Orchestration accommodates new
tasks and systems as businesses grow, ensuring
scalability.

•	 Compliance and auditability: Orchestration
adheres to compliance standards, facilitating audit
trails and reporting.

•	 Adaptability: Processes can be modified without
overhauls, addressing changing conditions or
requirements.

Effective workflow orchestration is pivotal for
operational excellence in complex environments.
It streamlines processes, enforces compliance and
optimizes efficiency.

The importance of integration
in process automation

The integration imperative: In the current business
environment, integration is a critical component
of process automation. Connecting these systems
becomes essential as organizations use a variety of
software applications, databases, and services for
effective operations; otherwise, they will operate
in silos. Coherent and efficient processes are made
possible by integrated components, which guarantee
seamless data flow. An article from CIOReview6 points
out that integration seem to have the answer to
problem of workflow silos.

Achieving seamless data flow: Smooth and precise
data flow is essential for effective process automation.
Data fragmentation can make it difficult to collaborate
and make decisions; integration prevents this.
Without manual intervention, seamless data flow
guarantees that data is available when and where
it is needed. Time is saved, mistakes are decreased,
and the experiences of customers and employees are
improved.

Think about a customer order process: Without
any manual input, an online order moves through
inventory control, starts warehouse operations,
updates sales records and notifies customers.
Experiences are frictionless thanks to this integration.

Enhancing efficiency and accuracy: Integration
enhances process automation by eliminating
redundancy and reducing human intervention.
Automated data transfer removes the need for manual
data entry, while real-time communication accelerates
processes.

In health care, integrating electronic health records
with laboratory systems provides instant data access
to doctors and enhances patient safety by reducing
miscommunication risks.

Integration also improves accuracy by maintaining
data consistency across systems. Integrated financial
systems ensure consistent financial data across
departments.

Seamless process automation requires effective
workflow orchestration and integration. Orchestrating
tasks ensures efficient order, while integration enables
data flow. Organizations embracing these strategies
optimize operations, minimize errors and stay
competitive.

Challenges in workflow
orchestration and integration

Heterogeneous IT landscapes: Today’s businesses
operate in intricate IT environments with a wide range
of systems. Due to compatibility issues, disparate APIs,
and data structure incompatibilities, integrating these
systems requires careful planning.

Data mapping and transformation: Data often
varies across systems, necessitating data mapping and
transformation. Mapping establishes common data
understanding, while transformation ensures data
compatibility.

Security and compliance: Secure data transfer is
necessary for system integration to avoid security
flaws and compliance violations. Regulations like
GDPR must be followed when exchanging data.

Key components of successful
orchestration and integration

Robust integration middleware: Integration
middleware is a 3rd-party tool that allows you to
connect two or more applications. These applications
can be cloud-based (e.g., SaaS application) or live
on-premises (e.g., legacy database).

API management and governance: API management
is the set of people, processes and technology that
enables an organization to safely and securely publish
APIs, either internally or externally.7 Governance
ensures responsible API usage, enhancing security and
compliance.

Process monitoring and error handling: Process
monitoring offers real-time visibility into workflow
status. Error handling detects and addresses
exceptions to maintain workflow integrity.

Best practices for effective
workflow orchestration and
integration

Mapping process flows and dependencies:
Understand and map processes for efficient
orchestration. Break down workflows, identify
dependencies, and visualize task sequences.

Selecting appropriate integration patterns: Choose
integration patterns based on organizational needs.

Patterns range from data synchronization to
event-driven architectures.

Prioritizing scalability and flexibility: Prioritize
scalable solutions that adapt to changing
requirements. Flexibility allows easy adaptation to
market changes.

Embrace change management: Effective change
management ensures that employees are informed
about changes, understand the benefits and are
trained to use new systems efficiently.

Continuously innovate: As technology evolves, new
tools and practices may offer improved efficiency and
capabilities. Continuously innovating ensures that your
processes remain up to date and optimized.

Future trends in workflow
orchestration and integration

Cloud-native orchestration solutions: Cloud-native
solutions enable dynamic and scalable orchestration
using containerization and microservices. Solutions
like Kubernetes offer flexibility and portability.

AI-powered intelligent integration: AI-powered tools
automate integration tasks, predict integration needs
and suggest optimal solutions. Machine learning
enhances integration efficiency.

Blockchain for secure interoperability: Blockchain
ensures secure data exchange through trusted
ledgers. It enhances authenticity, traceability and
privacy in data sharing.

40

#16/2023

4140

Conclusion

Recommendations for organizations exploring orchestration and integration:

The paradigm of process automation has evolved
in the dynamic world of business from simple task
execution to a seamless partnership between people
and machines. The forefront of this transformation
is led by workflow orchestration and integration,
which empowers businesses to manage complexity,
boost productivity and seize previously unimaginable
opportunities. Innovation, integration, and foresight
have paved the path from conventional automation to
seamless collaboration.

Automation’s development has made it clear that
organizations can synchronise disparate tasks into
harmonious workflows by orchestrating processes.

For those embarking on the journey of workflow orchestration and integration, several key recommendations can
serve as guiding stars:

•	 Prioritize strategy: Approach automation as a strategic initiative aligned with your business goals. Map out
processes, identify pain points, and set clear objectives for workflow orchestration and integration.

•	 Design with the future in mind: Choose cloud-native solutions that offer scalability, flexibility and portability.
These foundations will ensure that your orchestrated workflows remain agile in the face of changing
requirements.

•	 Invest in AI and automation expertise: As AI-powered integration gains prominence, nurturing a team
proficient in both automation and AI technologies will be a valuable asset for your organization.

•	 Collaborate across departments: Successful integration requires collaboration among various departments
and stakeholders. Involve IT, operations and business teams to ensure a holistic approach.

•	 Ensure compliance and security: In the era of data privacy and compliance regulations, prioritize secure
integration practices. Blockchain can offer an extra layer of security for sensitive data.

•	 Embrace change management: The shift towards seamless automation might introduce new processes and
tools. Proper change management strategies can ease the transition for employees.

•	 Continuously innovate: The landscape of automation is ever evolving. Stay informed about emerging
technologies and trends and be prepared to adapt your strategies accordingly.

This symphony is made up of strong integration
middleware that manages the seamless data transfer
between systems and is directed by AI-powered
intelligence that supports human decision-making.
Focus is on cloud-native orchestration, which provides
a flexible stage for these orchestrated performances
while blockchain ensures the veracity of each note in
the data exchange.

Organizations, which are situated at the nexus of the
present and the future, can gain an advantage through
efficiency, adaptability, and the convergence of these
trends. Data that is seamlessly transferred between
systems fosters innovation, gives employees power
and makes customers happy. Process optimisation,
precise insights and the freedom to direct human
creativity towards higher-value tasks are all
advantages.

References:

1.	 https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/ibvprocessautomation

2.	 https://www.processmaker.com/blog/the-evolution-of-digital-process-automation/#

3.	 https://www.xenonstack.com/insights/workflow-orchestration#:~:text=Workflow%20orchestration%20is%20
the%20automation,single%20significant%20process%20or%20workflow

4.	 https://appian.com/blog/acp/process-automation/workflow-orchestration-explained.html

5.	 The Kofax 2020 Intelligent Automation Benchmark Study Part 3: Intelligent Automation Platforms Accelerate
Digital Workflow Transformation Success

6.	 https://www.cioreview.com/news/integration-key-for-breaking-down-data-silos-nid-23522-cid-17.html

7.	 https://www.gartner.com/en/information-technology/glossary/api-management

Author

Parameswaran Sivaramakrishnan
Account delivery lead

Param brings over a decade of IT expertise to the table, specializing in the realms
of business process management and workflow orchestrations. With an extensive
career spanning various industries including manufacturing, finance, and insurance,
he has honed his skills in demystifying intricate technical concepts, rendering them
comprehensible for audiences of all technical backgrounds.

42

#16/2023

4342

https://appian.com/blog/acp/process-automation/workflow-orchestration-explained.html
https://appian.com/blog/acp/process-automation/workflow-orchestration-explained.html

Why is precise
monitoring and
observability so
crucial for trading
systems?

In brief

•	 Monitoring and observability tools provide
real-time feedback on each system component’s
fitness, performance and interoperability, rapidly
spotting and addressing irregularities and other
urgent issues

•	 Performance monitoring analyzes system metrics,
such as trade execution time, order fill rate,
slippage and latency. It helps identify bottlenecks
or inefficiencies impacting the system’s overall
performance

•	 Constantly monitoring the system infrastructure,
including servers, network connectivity, data feeds
and platforms, helps ensure the system is always
available, minimizing downtime and potential
losses

Put simply, it has a lot to do with the complex ins and
outs of banking and capital markets trading.

Only leading-edge monitoring and observability tools
deliver the extraordinary accuracy and flexibility
needed to negotiate the hyper-connected financial

industry reliably, day in and day out. In such a
quicksilver environment, speed of action and response
dictates profit and loss, which can prove devastating.

In the following pages, we’re going to deconstruct
the systems and processes used in global
trading. And as we trace the merits of leveraging
Murex-like instruments, we’ll discover the crucial part
observability and monitoring play in their robust and
agile effectiveness in banking and capital markets.

First things first

Resolving trading
system challenges

Enabling real-time
decision-making

Monitoring for trading systems refers to the
process of continuously observing and analyzing
the performance and behavior of a trading system.
It tracks various metrics, such as trade execution
speed, order book depth, latency, risk exposure
and profitability, to ensure the system functions
as intended and identifies any potential issues or
anomalies. Financial trading is in a world of its own. Its

fundamental principles are characterized by
dynamism, individuality and rapid response. A trading

Instant and infallible trader judgment is a core
competency for those working in quick and aggressive
banking and capital markets. Observability delivers

system is more than the sum of its parts — a vast
ecosystem comprising a multitude of integrated
components that drive complex trading initiatives.
They include tools for risk analysis, order-management
systems, data feeds, etc.

Monitoring and observability provide real-time
feedback on each component’s fitness, performance
and affiliate rapport. The tools keep a sharp eye on
these essential and convoluted networks, rapidly
spotting and addressing potential bottlenecks,
irregularities and other urgent issues while
diminishing the impact on core trading processes.

Here’s an idea of the core significance and critical
drivers of monitoring and observability in banking and
capital markets.

Luxoft has partnered with ITRS (a leading real-time
estate monitoring and observability software provider)
to develop and deliver advanced monitoring tools
tailored to the banking and capital markets sector, we
have built a trading observability framework that can
be applied to trading systems such as Murex, Adenza,
Finastra, Orchestrade and any other Front to Back
Trading platform.

Our specifically targeted monitoring solutions
provide an overview of heritage and cloud-based
systems, enabling financial organizations to safely
cross the evolving regulatory landscape while getting
accustomed to new technologies and marketplace
instability. This vital development underlines the
partnership’s commitment to helping shape the future
of financial trading.

#16/2023

44 45

Optimizing performance

Making predictions

Complying with the rules Achieving data security
and privacy

Reporting and visualization

Detecting anomalies

Enhancing the user experience

Managing costs

Sharpening your instincts

Integrating others

Watching your health

As I’m sure you’re aware, performance has a direct line
to trading systems profitability.

Performance monitoring involves measuring and
analyzing the system’s performance metrics, such
as trade execution time, order fill rate, slippage and
latency. It helps identify bottlenecks or inefficiencies
impacting the system’s overall performance.

Observability tools provide reports on resource
utilization, application performance and reaction
times. Also, institutions can identify opportunities
for optimization, refining the system to process
transactions faster, cut latency and enhance
operational efficiency by closely monitoring the
signals.

In addition to outlining the system’s current condition,
advanced monitoring also forecasts potential
complications like bottlenecks by analyzing historical
data and patterns. Adopting the old adage “Prevention
is better than cure,” the IT team can maintain
operational continuity and reduce the likelihood of
downtime.

As financial services is a highly regulated industry,
trading systems have to adhere to stringent
compliance requirements. Observability tools can
track and record trading activity, providing the
necessary audit trail for reporting. This ensures
transparency, complies with regulations and clears
adverse legal issues.

Due to the sensitive nature of financial data,
security and privacy are of prime significance to the
banking and capital markets sector. Monitoring and
observability solutions offer the data integrity and
confidentiality needed to detect irregular data-access
patterns or security breaches in real time.

The monitoring process usually includes creating
reports and visualizations to provide a clear view
of trading system performance and behavior.
Dashboards, charts and alerts (e.g., crucial metrics and
unexpected issues) are typical requirements.

Code-related trading-system monitoring factors
involve assimilating tools or libraries into the system’s
codebase to help collect/analyze data, originate alerts
or notifications and deliver visualizations.

Anomaly monitoring identifies unexpected and
abnormal behavior in trading system data or
operations (e.g., abrupt spikes in trading volumes,
atypical trading patterns, departure from set risk
criteria). Anomaly detection helps spot adverse issues
or irregularities before they affect the business.

Tracking user interactions in trading systems
allows banks to better understand how traders and
employees utilize the platforms. Simplifying workflows
and offering excellent training resources enhances
productivity, increasing data value and usability across
the entire enterprise.

Effective monitoring and observability help manage
and drive down costs. Identifying inefficiencies and
uneven resource distribution helps banks determine
the most effective allocation and cost management
tactics and strategies.

Maintaining a strong monitoring and observability
system gives banks an edge in the turbulent financial
services marketplace. It expedites differentiation by
developing increasingly reliable services, servicing
compliance and mitigating operational risks.

What about integrating monitoring and observability
systems with other third-party tools and banking
technology favorites, like analytics platforms,
compliance software and cybersecurity solutions?

Rather than an occasional health check, the tools
constantly monitor the condition and alertness of
the system infrastructure, including servers, network
connectivity, data feeds and platforms. It helps ensure
the system is up, running and continually available,
cutting downtime and potential losses to the absolute
minimum.

Monitoring risk

Troubleshooting

Planning scalability
and resources

Ensuring business
continuity

Monitoring a trading system’s risk exposure ensures
that the level of risk stays within established
parameters. It tracks metrics like size, leverage and
risk-adjusted returns to identify possible violations
and react appropriately.

The rapid discovery and recovery of system defects
or disorders is critical for enterprise well-being.
Observability technology insights help IT specialists
determine causality and execute the appropriate
fix. Consequently, mean time to resolution (MTTR) is
significantly curtailed with minimal adverse effect on
activities.

Financial markets often encounter swift trading
volume peaks. Observability tools help manage
heavy traffic, monitoring resource use and system
performance. Banks can ease resource scaling in times
of rising demand by examining trends to guarantee
premier performance regardless of the conditions.

For trading systems, unexpected downtime means
financial loss and potentially damaged reputations.
Thanks to their continual vision of system health,
monitoring and observability technologies can help
banks plan their redundancy, failover mechanisms and
disaster-recovery strategies.

a real-time overview of system behavior, response
times and transaction performance. Monitoring tools
record and analyze the criteria for the speed of order
execution, transaction confirmation and data-feed
latency. And, by feeding traders and decision-makers
immediate and dependable information, they’re more
likely to make more effective decisions.

46

#16/2023

4746

Developing trends

Working together

Looking for more insights?

Wrapping up

Financial monitoring and observability improvements
embrace hot topics like the effectiveness of
cloud-based monitoring tools and AI/ML for predictive
monitoring. That’s why Luxoft and ITRS launched their
strategic partnership for developing and delivering
advanced monitoring tools for banking and capital
markets platforms.

Their combined solutions deliver a coordinated
overview of heritage and cloud-based/premises
systems to help banks satisfy regulatory and
technological challenges while mitigating operational
risks, ensuring compliance and strengthening
durability.

Clearly, the case for financial monitoring and
observability is proven. It’s not a like-to-have; it’s
an integral feature of commercial and operational
success. In light of this need, the Luxoft and ITRS
partnership is about more than the solution. The
partners are fully committed to maintaining a secure
lifeline for financial institutions negotiating choppy
economic waters.

Monitoring and observability tools offer a holistic view
of both legacy and cloud-based systems. This vision
shines a light on a route map for banks daunted by
the challenges arising from new regulatory demands,
emerging technologies and shifting market conditions.

If you’d like to discuss any particular operational
problems you’re currently coping with or discover
what kind of premier performance and competitive
advantages the Luxoft and ITRS partnership could
coax from your trading systems, visit luxoft.com

So, what have we learned? Financial trading and
complex trading systems require an unswerving
commitment to monitoring and observability.
They are an essential source of accuracy, reliability
and resilience in an uncertain marketplace. From
optimal performance through efficient compliance
and insightful troubleshooting to exceptional user
experiences, observability and monitoring set a
banking and capital markets benchmark.

Contemporary monitoring and observability
technologies guide banks safely toward enhanced
resilience, sustainable growth and, with good fortune
and a following wind, unqualified success.

In an increasingly fast-turnaround world, real-time
decisions make or break businesses.

1.	 https://blog.flagright.com/post/why-transaction-monitoring-is-important#:~:text=It%20enables%20
banks%2C%20credit%20unions,safety%20of%20their%20monetary%20transactions.

2.	 https://www.globalbankingandfinance.com/what-banks-need-to-know-about-observability/

3.	 https://www.itrsgroup.com/blog/banks-monitoring-containers

4.	 https://www.luxoft.com/files/pdfs/Luxoft-and-ITRS-advanced-monitoring-solutions.pdf

5.	 https://www.luxoft.com/pr/luxoft-and-itrs-partner-to-deliver-advanced-monitoring-tools

References:

Author

Nimmala Naga Santhosh Baba
Principal Consultant (TREC Lead Cloud and DevOps)

Santhosh Nimmala is TREC Lead for Cloud and DevOps Trading and Risk
Management Solutions at Luxoft. He has 8+ years of experience across APAC and
EMEA, focusing on Cloud and DevOps solutions and building accelerators which help
clients with their cloud migrations.
In pre-sales, Santhosh also has a successful track record of delivering multiple
Cloud and DevOps implementations. Currently, he is responsible for Developing
and delivering Cloud and DevOps solutions for the Trading and Risk Management
Solutions practice and driving multiple initiatives across the organization.

We stand united
with Ukraine

48

#16/2023

4948

https://www.luxoft.com/pr/luxoft-and-itrs-partner-to-deliver-advanced-monitoring-tools
https://blog.flagright.com/post/why-transaction-monitoring-is-important#:~:text=It%20enables%20banks
https://blog.flagright.com/post/why-transaction-monitoring-is-important#:~:text=It%20enables%20banks
https://www.globalbankingandfinance.com/what-banks-need-to-know-about-observability/
https://www.itrsgroup.com/blog/banks-monitoring-containers
https://www.luxoft.com/files/pdfs/Luxoft-and-ITRS-advanced-monitoring-solutions.pdf
https://www.luxoft.com/pr/luxoft-and-itrs-partner-to-deliver-advanced-monitoring-tools

Fuzzing! Why
traditional testing
is not enough

In the dynamic and fast-paced world of software
development, ensuring the reliability and security
of applications is a top priority. Traditional testing
methods have long been the bedrock of quality
assurance, but they come with inherent limitations.
Here comes fuzzing, a not so well known automated
software testing technique that is gaining significant
attention for its ability to uncover unexpected
behaviors, vulnerabilities and security flaws. In this
extensive article, we will embark on a deep dive
into the world of fuzzing, exploring its fundamental
concepts, historical evolution, the underlying logic
of fuzzing tools and its critical applications across
various domains. Finally, we will place a special focus
on how fuzzing is revolutionizing the automotive
industry.

The purpose and significance of fuzzing

What is fuzzing?

At the heart of software development lies the quest for reliability, robustness and security. Traditional testing
methods, such as unit testing and integration testing, are essential but have limitations when it comes to exploring
the vast landscape of possible software behaviors. This is where fuzzing steps in as a valuable addition to the
testing arsenal.

Fuzzing is an automated software testing technique that involves feeding a program with a bunch of invalid,
unexpected or random data as inputs. The program under examination is then closely monitored for any
exceptions, crashes, memory leaks or unexpected behavior. The fundamental idea behind fuzzing is to venture
into uncharted territories and edge cases of a software’s behavior, probing the extremities that traditional testing
may miss.

In the context of complex software, such as the intricate systems found in autonomous driving vehicles, the
spectrum of expected and unexpected behaviors expands dramatically. Traditional testing may well cover the
side of expected behaviors, but it often falls short when it comes to identifying vulnerabilities and unexpected
actions on the other side of the spectrum. Fuzzing bridges this gap, actively exploring and testing the extremities of
software behavior.

The historical evolution of fuzzing

The reader could think that fuzz testing is a cutting-edge fancy technology, but fuzzing is not a recent innovation
and has a rich history that spans over three decades. Let’s embark on a historical journey through the
development and adoption of fuzzing techniques.

The birth of fuzzing

The term “fuzzing” first emerged when it was used in a class project at the University of Wisconsin in 1988. It was
two years later, in 1990, that the first paper on fuzzing was published, marking the initial steps in its evolution.

First use of the term ‘‘fuzz’’
during a class project at
the University of Wisconsin

Fuzzing applied by Google

First paper published

Shellshock and Heartbleed
bugs easily disclosed
through fuzzing

Fuzzing applied to several
open-source projects

Microsoft and Google
announced Fuzzing
as-a-Service products
(OSS-Fuzz)

Fuzzing applied
to commercial
OS distributions
(Windows, Mac OS)

Fuzzing widely used to
find tons of bugs on the
most common OS modern
distributions

1988

2012

1990

2015

1995

2016 2020

‘00-’06

50

#16/2023

50 51

Fuzzing in open-source projects

Fuzzing catches the attention of tech giants

Google’s pioneering role

Uncovering critical vulnerabilities

In the mid-1990s, fuzzing started gaining traction in
open-source projects. Although not yet widespread
in commercial software, its presence in open-source
initiatives signaled its potential.

Around the early 2000s, tech giants like Apple
and Microsoft recognized the value of fuzzing as
a testing technique. They began incorporating
fuzzing into their testing procedures, primarily
to scrutinize their operating systems for
vulnerabilities.

The year 2012 marked a pivotal moment for fuzzing
when Google started applying fuzzing techniques
to its products and services. This move significantly
increased the visibility and importance of fuzzing in
the software development landscape.

In 2015, a remarkable demonstration showcased
the power of fuzzing. Two widely known security
vulnerabilities, Shellshock and Heartbleed, which
had plagued the industry for extended periods,
were rapidly discovered and exposed using fuzzing
techniques. These discoveries underscored the
effectiveness of fuzzing in uncovering critical
vulnerabilities that traditional testing had missed.

Fuzzing as-a-Service

In 2016, both Microsoft and Google introduced
Fuzzing as-a-Service, making this powerful testing
technique more accessible to developers worldwide.
This marked a new era in the democratization of
Fuzzing, allowing a broader range of projects to
benefit from its capabilities. In particular, OSS-Fuzz is
a pioneering fuzzing service and platform developed
and maintained by Google. Its primary mission is to
enhance the security and robustness of open-source
software (OSS) projects by systematically identifying
and addressing software vulnerabilities through
automated fuzz testing.

Numerous open-source projects have benefited from
integrating with OSS-Fuzz. Some notable examples
include:

•	 Wireshark: The popular network protocol analyzer
has addressed multiple security vulnerabilities
and stability issues with the help of OSS-Fuzz

•	 SQLite: A widely used embedded database
engine, SQLite, has been continuously tested by
OSS-Fuzz, leading to the discovery and
remediation of critical vulnerabilities

•	 LibreOffice: The open-source office suite
LibreOffice has leveraged OSS-Fuzz to enhance its
security and reliability

•	 FFmpeg: This multimedia framework has
identified and fixed vulnerabilities thanks to its
participation in OSS-Fuzz

In 2017, Google published a report with data regarding
the usage of OSS-Fuzz, and the results are impressive.
In only 5 months, from January to May, it has found
1000+ bugs, 264 of which are potential security
vulnerabilities, on several critical open-source projects.

Heap buffer overflows

Global buffer overflows

Stack buffer overflows

Use after frees

Uninitialized memory

Stack overflows

Timeouts

Ooms

Leaks

Ubsan

Unknown crashes

Other (e.g. assertions)

142110

107

211

107 97

193

20
29

Modern-day adoption

Program control flow graph (CFG)

The iterative fuzzing process

Input A

Input B

Today, fuzzing is an integral part of the testing
procedures for modern operating systems, software
distributions and critical applications. Its historical
evolution showcases its journey from obscurity to
becoming a fundamental testing technique employed
by industry leaders.

Central to fuzzing is the concept of a program control
flow graph (CFG). Imagine a program as a tree-like
structure with numerous decision points or branches,
each influenced by different inputs. These branches
represent the various paths the program can take
based on its input. Fuzzing aims to navigate this
complex tree to discover unexpected behaviors.

Fuzzing tools begin with a seed input, which can be
random or semi-random data. This seed input serves
as the starting point for stimulating the program’s
behavior. The fuzzing tool then continuously mutates
this input to explore new branches of the CFG. The
objective is to identify any unexpected program
behaviors, crashes or vulnerabilities.

This process is iterative and ongoing. Fuzzing tools
operate until they uncover a bug or vulnerability or
until a predetermined timeout is reached. The iterative
nature of fuzzing ensures comprehensive exploration
of a program’s behavior.

The logic behind
fuzzing tools

Understanding the underlying logic of fuzzing tools is
essential to grasp how they effectively explore the vast
space of potential program behaviors.

Fuzzing in automotive
applications

Now that we have a solid understanding of fuzzing’s
core principles and historical context, let’s shift our
focus to its applications in the automotive industry.
The automotive sector presents unique challenges and
opportunities for fuzzing.

The complexity of modern vehicles

The attack surfaces in automotive sftware

Modern vehicles are marvels of technology, with
intricate software systems that control everything
from engine performance to safety features. These
systems are highly interconnected, creating a complex
web of software components.

In the context of automotive software, the attack
surfaces refer to the points of entry or interfaces
through which potential attacks can occur. These
attack surfaces can be numerous and diverse, posing
significant challenges for ensuring the security and
reliability of automotive software.

Some of the attack surfaces in modern vehicles
include:

•	 USB connections

•	 Bluetooth connectivity

•	 Smartphone applications

•	 External sensors

•	 Internet connectivity

52

#16/2023

5352

The complexity of modern vehicles and the diversity of attack surfaces make thorough testing and security
measures crucial.

Fuzzing for automotive security

Fuzzing plays a critical role in enhancing the security of automotive software. By subjecting software components
to a barrage of unexpected and potentially malicious inputs, fuzzing helps identify vulnerabilities and weaknesses
that could be exploited by attackers.

In particular, fuzzing can be applied to test the input interfaces of automotive software components (SWC). These
interfaces, known as subscribers in adaptive AUTOSAR, must be resilient to unexpected data and potential attacks.

The importance of fuzzing in the automotive sector cannot be overstated, especially as vehicles become
increasingly connected to external networks and devices. The potential attack vectors are vast, and robust testing
measures, including fuzzing, are essential for ensuring the safety and security of vehicles on the road.

SWC SWC

SWC

SWC SWCSensor

Sensor

Attack surface!

Sensor

SWC

Conclusion

Fuzzing stands as a powerful and indispensable testing technique that complements traditional methods. It
empowers developers to explore the full spectrum of possible program behaviors, uncovering vulnerabilities and
issues that might remain hidden otherwise. The historical evolution of fuzzing, driven by industry giants like Google
and Microsoft, has made it an integral part of modern software development.

In the automotive sector, where safety is paramount, fuzzing takes on a critical role in ensuring the resilience of
software components to unexpected data and potential attacks. As connected vehicles become more prevalent,
the importance of comprehensive testing, including fuzzing, will continue to grow.

Fuzzing and traditional testing are not mutually exclusive; they are complementary. A robust testing strategy
should incorporate both approaches to ensure the highest levels of software reliability, security and quality.

As we look to the future of software development and the ever-evolving landscape of technology, harnessing the
power of fuzzing will remain essential. It enables us to uncover hidden vulnerabilities, protect against unexpected
behaviors, and build software that meets the highest standards of quality and security.

In a world where software touches nearly every aspect of our lives, fuzzing serves as a guardian of reliability and
security, ensuring that the digital systems we rely on remain resilient in the face of the unexpected.

Google OSS_Fuzz report: https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

Autonomous Driving attack surfaces (image modified): https://www.researchgate.net/figure/The-current-attack-
surface-of-an-average-connected-vehicle-69_fig9_334416564

References:

Author

Luigi Bassetta
Senior Software Engineer

Luigi is a Senior Software Engineer and Line Manager with experience mainly in
the robotics and automotive industries. His technical skills are mostly in object
oriented programming, and has contributed to the development of various software
applications throughout his career.
Luigi is also a proficient team leader, having successfully led multicultural teams
of mixed seniorities. Luigi holds a Master’s degree with honors in Robotics from
Università di Napoli Federico II and a 2nd Level Specializing Master in Industry 4.0
from Politecnico di Torino. He’s a dedicated professional who is passionate about his
work and committed to delivering high-quality solutions. As a certified Professional
Scrum Master and Professional Product Owner, Luigi is committed to promoting
Agile methodologies and facilitating teamwork in software development projects.

54

#16/2023

5554

https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://www.researchgate.net/figure/The-current-attack-surface-of-an-average-connected-vehicle-69_fig9_334416564
https://www.researchgate.net/figure/The-current-attack-surface-of-an-average-connected-vehicle-69_fig9_334416564

Encouraging a
forward-thinking, yet
cautious approach
to LLM integration in
software engineering
activities

Imagine you are a software engineer working on a
project that requires you to write code in a language
you are not familiar with. You could spend hours
browsing through documentation and tutorials, or
you could ask an AI collaborator for help.

In recent years, the software engineering landscape
has witnessed unprecedented advancements, with
AI technologies leading the charge. March 2023
marked a significant milestone with the introduction
of OpenAI’s ChatGPT-4, a testament to the rapid
pace of development in this field. As we navigate
the evolving role of Large Learning Models (LLMs)
in software engineering activities, it becomes
imperative to harness their capabilities responsibly
and securely.

This article aims to shed light on the remarkable
potential of LLMs and AI collaborators while
emphasizing a conscientious approach to leveraging
this “great power” responsibly and ethically in
various spheres of activities.

Defining AI collaborators
and LLMs

Before the advent of sophisticated AI collaborators,
many programmers relied on simple tools like the
“rubber ducky” for debugging, a practice that perhaps
continues to this day alongside the use of platforms
like Stack Overflow. However, the landscape has
evolved dramatically, with modern-day solutions
offering assistance through LLMs like Bing, Bard, and
ChatGPT for a wide array of daily queries, ranging
from culinary advice, using the ingredients that we
have in our house, or to coding assistance in the most
obscure programming languages, like how to sort
an array of integers using the COW programming
language (don’t ask me if it is working or not), you
might rely on these tools to get some guidance.

ChatGPT-4 response for “Use the COW programming
language to sort a given array of integers.”

What are LLMs?

LLMs are computer programs designed to work with
human language (like English, Spanish, etc.). These
programs have shown themselves to be exceptionally
good at understanding and generating text, helping
to perform a variety of tasks such as translating
languages, answering questions, writing essays,
and much more. Because of their ability to handle
these complex tasks with high accuracy, they are top
performers in the field of natural language processing
(NLPs), which is the technology that powers things
like voice assistants, chatbots and other tools that
communicate using human language.

For example, ChatGPT-4 is an LLM that can generate
realistic text and images based on a given prompt. You
can ask ChatGPT-4 to write a poem, draw a picture or
even create a resume for you.

What is an AI collaborator?

An “AI collaborator” refers to a tool or a system that
leverages the capabilities of large language models
(LLMs) to work alongside humans in performing
various tasks that involve processing and generating
human-like language.

In essence, an AI collaborator is a system that brings
the advanced language understanding capabilities
of LLMs to assist individuals and organizations in
various tasks, offering a collaborative approach to
work and problem-solving. It harnesses the power
of AI to enhance productivity and foster creativity by
providing intelligent assistance grounded in a deep
understanding of human language.

Case studies illustrating
the use of LLMs

“LLMs perform at a level comparable to humans for
many proficient tasks” - A Berti2

In recent papers we can see that LLMs have various
use cases. Wenhao Zhu et al. demonstrates how
LLMs exhibit new working patterns when used for
multilingual machine translation. Ferrer-Benítez et al.
explored the role of LLMs in online dispute resolution,
demonstrating how these models can analyze
large volumes of data to enhance decision-making
processes. This research showcases a groundbreaking
approach to dispute resolution, where LLMs can sift
through extensive data to identify patterns and trends,
offering a nuanced understanding that aids in conflict
resolution.

But other than scientific research in this field there
are also many creative and unique ideas that LLMs
or chat assistants can be used for: Cover letter
generators, personality chatbots (talk with Trump),
YouTube summarizers, information extraction from
job postings, web scrapers, searchable database of
your documents, clustering social media posts and
podcast episodes into topics or even classify inquiries
from e-mails.

LLMs can assist software engineers in various tasks
such as debugging, testing, documentation, code
generation and more.

56

#16/2023

56 57

How can I learn to use LLMs for personal projects?

Step-by-step guide to play with LLMs on your own machine

Steps:

Probably the most popular platform you could play with is Huggingface, but you’ll also find quite a lot of great
examples which you can play with using GoogleColab or Kaggle, which offers different Open or Commercial LLMs,
data sets you can try, and big communities that share ideas on how to finetune, transform or adapt a specific
model so that it can help you suit different needs.

A good thing about communities on these platforms are is that they are vibrant and always willing to help
newcomers. So, don’t hesitate to reach out for guidance.

Some of you may be eager to play with an LLM really quickly, so in the following guide, we won’t be fine-tuning,
or doing something more than locally hosting and interacting with an LLM model, using LM studio, a tool
that basically has out of the box, a complete platform, with a graphic user interface that eases the process of
downloading, chatting or even starting up a server that lets you interact with the LLM via API.

1.	 Go to lmstudio.ai, and download the corresponding installer suitable for your Operating System

2.	 After the installation is complete, from the homepage of the application, you can download the model which
best fits your needs (I’ve chosen “CodeLlama 7B Instruct”, but you can choose whichever model suits your
hardware capabilities and use case, keep in mind that you do need to pay attention to these details or else the
model might not work)

3.	 Next click the “Chat” icon, choose the downloaded Model from the top bar, and after it has loaded, start asking
it questions

4.	 Ask simple questions to verify it (I’ve asked “Who is Vlad Tepes?” and it responded quite quick with a short and
valid answer)

5.	 You can try various models, ask different questions and see if the model is capable of responding accordingly

There you have It, your own LLM, which you can use privately and offline. Keep in mind that this is not the only
way you can host your own LLM, and there are various tools out there, which are capable of more.

What are the best LLMs that you can use for free?

Depending on the context, there are various characteristics, that you need to carefully consider when choosing the
right model which fits your needs or project requirements, I won’t go too deep into this, because we’re not focusing
on that, but for example from a license perspective (private, open), the number of parameters, the hardware
requirements or the type of model (fine-tuned, pre-trained, etc), you can find the most popular, or trending models
by checking the Hugging Face LLM leaderboard.7

58

#16/2023

5958

Hugging Face LLM leaderboard screenshot as of 09/17/2023.

If you’re interested in learning more about the history of how LLaMa, MPT, Falcon and LLaMA-2 had put open-
source LLMs on the map you can explore their history in a series of articles by Cameron R. Wolfe, Ph.D, the
director of AI at Rebuy Engine.

Potential pitfalls and challenges

Computational cost

While venturing into the world of LLMs, be prepared to face challenges, including high computational costs and
hardware limitations. As mentioned in the Washington Post: ”Generative AI” is incredibly expensive to build and
run — from specialized chips to data server computing power to expensive engineers.” However, these hurdles are
not insurmountable, leveraging cloud computing platforms can be a viable solution to hardware constraints, and
seeking community advice can often provide cost-effective strategies to build and run your LLM. It’s a field where
collaborative efforts can go a long way in overcoming individual challenges.

Data quality

Hallucinations

User input

Another important aspect is the data quality, some LLMs are trained on large amounts of data, which may contain
errors, biases or misinformation. This can affect the quality and reliability of the outputs generated by LLMs.

Hallucination in LLMs refers to the generation of inaccurate, nonsensical or detached text, posing potential risks
and challenges for organizations utilizing these models, and can be categorized into several types:

Can you recommend a healthy vegetarian recipe for dinner?

LLM response

Hallucination Explanation

Of course! So how about fried chicken with mashed potatoes? In addition, tomatoes are also
an exellent pairing for this dish as they are rich in calcium. Enjoy the steak!

Input-conflicting hallucination: Fried chicken with mashed potatoes is not a vegetarian recipe.

Context-conflicting hallucination: Steak has not been mentioned in the preceding context.

Fact-conflicting hallucination: Tomatoes are not rich in calcium.

Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Models11

From: Pretraining Data to Language Models to
Downstream Tasks: Tracking the Trails of Political

Biases Leading to Unfair NLP Models13

•	 Logical fallacies: The model errors in its
reasoning, providing wrong answers (E.g.: 2+2=5)

•	 Fabrication of facts: Instead of responding with
“I don’t know,” the model confidently asserts
non-existent facts. We saw something similar with
the launch of Google’s AI chatbot Bard

•	 Data-driven bias: The model’s output may skew
due to the prevalence of certain data, and may
have political bias. An issue which was already
proven in a research paper (See image to the
right)

60

#16/2023

6160

Security and ethical
considerations

Responsible use of LLMs

People shouldn’t underestimate the importance
of privacy and responsible data consumption in all
forms, but although this article is not about cyber
footprints and cybersecurity, I do want to highlight
the importance of this and that you should not
neglect it, for more on this subject I also recommend
a book by Carissa Véliz, “Privacy is Power” where she
speaks about AI, mass-surveillance, privacy, freedom,
autonomy, fairness, equality and democracy in the
digital world.

Privacy and data security considerations

Tips for organizations looking to integrate AI in
their software engineering processes

Here is a concrete example that you don’t want to be
a part of, a security flaw or some kind of technical bug,
allowed users to see other conversations in the chat
history which weren’t theirs. Now imagine you had
asked some sensitive questions about your health,
or wanted to check some code snippet, would you
feel comfortable knowing that it has been exposed to
other users?

As we embrace the capabilities of LLMs, it is crucial
to remain vigilant about the ethical dilemmas they
pose. Bias in AI, stemming from skewed training data,
can perpetuate stereotypes and misinformation.
Moreover, the potential for misuse in spreading
misinformation is a pressing concern. It falls on our
shoulders to nurture a community where the use of
AI is grounded in ethics, encouraging openness and a
spirit of inclusivity to address these pressing concerns.

As organizations contemplate integrating AI into
their software engineering processes, it is prudent
to approach with caution, given the ethical and
legal implications. Here are some tangible steps
organizations can take:

1.	 Pilot testing: Before full-scale implementation,
conduct pilot tests to gauge the effectiveness and
safety of AI integration

2.	 Training: Ensure team members are adequately
trained to work with AI technologies, emphasizing
ethical usage

3.	 Feedback loop: Establish a feedback loop where
team members can report issues and provide
insights for continuous improvement

4.	 Collaboration with legal teams: Collaborate
closely with legal teams to ensure compliance with
regulatory requirements

By taking measured steps, organizations can foster a
safe and productive environment for AI integration in
the software development life cycle.

Looking ahead

Future developments in LLM technology

As LLMs continue to improve, they are expected to
have a major impact on many industries, including:

•	 Health care: LLMs can be used to develop new
drugs and treatments, diagnose diseases and
provide personalized medical advice

•	 Education: With the help of LLMs we could create
personalized learning experiences, grade essays
and even answer student questions

•	 Customer service: Having LLMs as chatbots that
can answer customer questions and resolve
issues

•	 Finance: Using LLMs we could analyze financial
data, make investment predictions and develop
trading strategies

•	 Cybersecurity: If there is a classifying task,
then LLMs might be the best solution to detect
malware, identify phishing emails and protect
against other cyberattacks

As we look to the future, the integration of LLMs
promises to revolutionize various industries, from
health care to cybersecurity. Beyond individual
sectors, there lies immense potential in cross-industry
collaborations. For instance, the health care and
AI technology sectors could collaborate to develop
predictive models for early disease detection, while
the finance and cybersecurity sectors might join forces
to create AI-driven security protocols for financial
transactions. Such synergies could pave the way for
innovations that redefine the boundaries of what
is possible, ushering in a new era of efficiency and
innovation.

Expert opinions and predictions for the future

Cem Dilmegani, principal analyst at AIMultiple, brings
up concerns surrounding bias, inaccuracy and toxicity
limit their broader adoption and raise ethical concerns
due to the ability of LLMs to generate human-like text
and address a wide range of applications.

Rob Toews, a contributor at Forbes, writes about
the next generation of large language models. He
discusses how the next generation of LLMs will be
more efficient, more accurate, and more capable than
their predecessors. He also predicts that LLMs will
become more specialized in their applications .

Geoffrey Hinton, co-founder of DeepMind, expresses
concerns about open-source LLMs, warning of
increased risks and misuse.

While experts have raised valid concerns regarding
the potential pitfalls of LLMs, it is equally important to
highlight the optimistic outlook shared by many in the
industry. The next generation of LLMs is anticipated to
be more efficient and specialized, opening up avenues
for groundbreaking applications in various fields.
Furthermore, with ongoing research and development,
we can expect to see models that are more secure
and less prone to misuse, fostering a landscape
where LLMs can be utilized to their full potential while
safeguarding ethical considerations.

Conclusions

While the journey to building your own LLM model
may present challenges, the potential rewards are
substantial. The landscape is ripe with opportunities
for innovation, creativity, and enhancement of various
tools that can potentially revolutionize our daily lives.
As we stand on the cusp of this exciting frontier, it
is incumbent upon us to navigate it with a sense of
responsibility and ethical grounding.

I encourage readers to delve into the world of LLMs,
equipped with knowledge and a conscientious
approach, to explore the countless possibilities that
await. Let us forge a path of innovation grounded in
safety, transparency and ethical considerations.

62

#16/2023

6362

1.	 [2304.02020] A Bibliometric Review of Large Language Models Research from 2017 to 2023 (arxiv.org)

2.	 [2307.02194] Abstractions, Scenarios, and Prompt Definitions for Process Mining with LLMs: A Case Study
(arxiv.org)

3.	 [2304.04675] Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis
(arxiv.org)

4.	 Online dispute resolution: can we leave the initial decision to Large Language Models (LLM)? | Metaverse Basic
and Applied Research (saludcyt.ar)

5.	 Simplicity Wins: How Large Language Models Will Revolutionize Software Engineering (blackhc.net)

6.	 LM Studio - Discover, download, and run local LLMs

7.	 https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

8.	 The History of Open-Source LLMs: Better Base Models (Part Two) (substack.com)

9.	 Every start-up is an AI company now. Bubble fears are growing. - The Washington Post

10.	 https://masterofcode.com/blog/hallucinations-in-llms-what-you-need-to-know-before-integration

11.	 [2309.01219] Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Models (arxiv.org)

12.	 Google’s AI chatbot Bard makes factual error in first demo

13.	 [2305.08283] From Pretraining Data to Language Models to Downstream Tasks: Tracking the Trails of Political
Biases Leading to Unfair NLP Models (arxiv.org)

14.	 Carissa Véliz – Privacy is Power

15.	 https://www.pcmag.com/news/chatgpt-users-report-seeing-other-peoples-conversation-histories

16.	 The Future of Large Language Models (aimultiple.com)

17.	 The Next Generation Of Large Language Models (forbes.com)

18.	 Open source ChatGPT alternatives could make AI more dangerous (techmonitor.ai)

References:

Author

Emil Marian Pasca
Senior QA Engineer

Currently at Luxoft, Emil Marian Pasca plays a pivotal role in contributing to the
adoption and implementation of automation test strategies and quality assurance
practices for distributed architecture software products. Emil holds both a Bachelor’s
and an M.Sc. degree in Computer Science from the Technical University of
Cluj-Napoca. As a Ph.D. candidate, he is delving into the realms of Cybersecurity,
distributed systems and machine learning. His research encompasses areas such as
web applications, automation testing, secure software development, and machine
learning, positioning him at the crossroads of advanced technology and security.
Beyond Luxoft, Emil’s rich academic pursuits continue to shine, reflecting his deep
expertise and passion for the field.

ADD HERE

6464

The intersection of
big data and artificial
intelligence

Introduction

The role of big data in AI

The data revolution

Data is the fuel for AI

The rise of artificial intelligence

The convergence of big data and AIThe 21st century has ushered in an era defined by
records. Never before in human history have we
generated and accrued such full-size portions of
statistics. This information deluge arises from a mess
of assets, such as social media, sensors, smartphones,
and IoT gadgets. It encompasses structured statistics
saved in conventional databases and unstructured
statistics in the form of text, photos, and videos.
The term “big data” encapsulates this phenomenon,
highlighting the sheer volume, velocity, variety, and
veracity of statistics at our disposal.

At the heart of AI lies the need for large quantities
of statistics. AI models, especially machine learning
algorithms, rely on information to study, generalize,
and make knowledgeable decisions. The more facts

these models have access to, the better they perform.
This essential principle has given an upward push to
the saying, “Data is the brand-new oil”.

Data is the raw material upon which AI models
are trained. Consider natural language processing
models like GPT-3, which are educated on large
textual content datasets, allowing them to generate
human-like text. Similarly, photograph recognition
models like convolutional neural networks (CNNs)
emerge as extra accurate with large photo datasets.
Therefore, big data affords the necessary uncooked
cloth to create AI models capable of duties like
language translation, speech recognition, and image
classification with high accuracy.

In parallel to the record explosion, artificial intelligence
(AI) has passed through a renaissance. AI, an idea
relegated to technological know-how fiction, has
emerged as a practical and pervasive generation. At
its core, AI seeks to replicate human intelligence in
machines. It encompasses machine learning, natural
language processing, computer vision, and deep
learning, among different fields. AI has permeated

The intersection of big data and AI represents a
pivotal factor in the technological landscape. It is
wherein the abundance of facts meets the power of
smart algorithms, unlocking unheard-of opportunities
across industries, from health care and finance to
transportation and leisure. This article explores the
complex courtship between big data and AI, their roles
in shaping each other, the demanding situations they
pose, and their profound effect on diverse sectors.

numerous components of our lives, from digital
private assistants like Siri and Alexa to self-driving
automobiles and advanced health care diagnostics.

Training AI models

Data preprocessing and feature engineering

Training AI models, especially deep neural networks,
requires giant computational power and huge
datasets. For example, consider the training of
self-driving automobiles. These automobiles depend
on AI algorithms to use system statistics from sensors,
cameras, and LiDAR to make real-time driving
decisions. Big data technologies enable the storage
and analysis of the sizeable amounts of records
generated throughout autonomous driving, making
this era possible.

One of the most time-consuming obligations in AI
development is data preprocessing. Before feeding
statistics into AI models, it regularly requires cleaning,
transformation, and feature engineering. Big data
technologies, such as Apache Spark and Hadoop, are
instrumental in managing those duties effectively,
permitting data scientists to prepare datasets for AI
training efficiently.

The role of AI in big data

Advanced analytics

While big data technologies allow the storage
and processing of huge datasets, AI extends its
competencies by using advanced analytics equipment.
Machine learning algorithms can uncover hidden
patterns, correlations, and anomalies in big data,
permitting agencies to gain deeper insights into their
operations, clients, and markets. This mixture of big
data and AI complements decision-making methods.

#16/2023

66 67

Real-time data analysis

Predictive analytics

The convergence of big data and AI permits
real-time statistical analysis and decision-making.
AI models can process incoming statistics streams
unexpectedly, figuring out developments, anomalies,
and opportunities in real time. Industries that include
finance, health care, and e-commerce leverage this
functionality to enhance consumer experiences,
stumble on fraud in real-time and respond rapidly to
changing marketplace situations.

AI models, in particular predictive analytics algorithms,
leverage historical big data to make forecasts and
predictions. For instance, in health care, AI can analyze
patient data to determine expected disease outbreaks.
In finance, AI models can forecast inventory fees
based totally on historical buying and selling data. The
integration of AI with big data offers a powerful tool
for making fact-driven predictions.

Challenges and ethical
considerations

Real-world applications

Data privacy and ethics

Finance

Health care

Data quality

Interpretability and explainability Luxoft’s contribution to finance
(unique business case)

The collection and analysis of large amounts of
records enhances full-size concerns about privacy
and ethical considerations. Striking stability in utilizing
records for useful functions and safeguarding
individual privacy remains a pressing trouble. AI
algorithms that process personal information need
to adhere to strict privacy policies, including GDPR in
Europe and CCPA in California.

In the finance industry, AI-powered algorithms
examine monetary information and market tendencies
to make funding decisions. High-frequency buying
and selling firms hire AI models to execute trades
in milliseconds, leveraging big data to advantage a
competitive facet. Additionally, AI is used for fraud
detection, credit danger assessment, and algorithmic
buying and selling.

The health care industry has witnessed transformative
improvements at the intersection of big data and
AI. Electronic health records (EHRs) include full-size
amounts of patient data, which AI algorithms can
examine to prevent disease outbreaks, improve
diagnostics, and customize treatment plans. For
example, IBM’s Watson for Oncology uses AI to help
oncologists in most cancer treatment decisions by
analyzing patient information and clinical literature.

Business case: The “BlueDot” project is an example
of the use of big data and artificial intelligence for
evaluation in health care. BlueDot is an AI-powered
platform that analyzes information reviews, social
media, and flight information to come across feasible
viruses. At the start of the COVID-19 pandemic,
BlueDot predicted the full unfolding of the sickness
in areas around the world, providing better facts to
health officers.

Ensuring the pleasantness and reliability of big data
is important for AI systems to generate the correct
insights. Noise, inaccuracies, and biases in statistics
can result in incorrect AI models. Therefore, agencies
ought to put money into excellent guarantee methods
to decrease mistakes and biases.

As AI models become more state-of-the-art, making
sure their transparency and interpretability are crucial,
especially in domains in which human decisions are
stimulated through AI guidelines. Understanding why
an AI model made a specific decision is important for
constructing trust and accountability.

In the finance industry, I had the privilege to work
on a project for a reputable credit card organization.
Leveraging the power of big data, which serves as fuel
for AI models, we have been capable of stumbling on
fraudulent transactions and pinpointing personnel
who facilitated those transactions. This project
exemplifies the vital role of data-driven AI solutions in
bolstering monetary protection and integrity.

Business case: Renaissance Technologies, an
investment fund called the Medallion Fund, uses
artificial intelligence and big data to strategize its
business. His AI-focused approach has consistently
outperformed most other hedge funds for years. The
fund analyzes market trends by analyzing past and
current trends and adjusts its policies accordingly.

Autonomous vehicles

E-commerce

Luxoft’s contribution to e-commerce
(unique business case)

Manufacturing

Agriculture

The automobile industry benefits from the integration
of big data and AI in the improvement of autonomous
vehicles. These vehicles depend on AI algorithms to
use information from sensors, cameras, and LiDAR to
make real-time riding decisions. Big data technology
permits the storage and analysis of the tremendous
quantities of statistics generated all through
autonomous driving.

Business case: Waymo is a unit of Alphabet Inc. and
a leader in driverless vehicles. Waymo’s driverless
vehicles have traveled hundreds of thousands of
kilometers on the roads and accumulated records.
This information is used to educate artificial
intelligence algorithms so that they will help
automobiles exert pressure thoroughly and effectively
in various environments.

In the world of e-commerce, AI and big data are
hired to provide customized product suggestions to
customers based totally on their browsing and buying
records. This not only complements the shopping
experience but also boosts sales and consumer
retention.

Business case: Amazon’s recommendation is a
well-known example. Amazon uses artificial
intelligence to analyze user behavior, product
usage, and purchase history to deliver personalized
recommendations. These strategies increased their
sales and customer satisfaction.

In the e-commerce industry, I had the opportunity
to work on a project for a prominent online hotel
booking e-commerce organization. Harnessing the
capabilities of big data, which fuels AI models, we
achieved the capability to predict traffic patterns on
specific days. This allowed us to provide personalized
discounts to customers based on their booking history
and the expected traffic on booking days. This project
underscored the immense potential of data-driven AI
solutions for enhancing the customer experience and
optimizing sales strategies.

Manufacturing methods are increasingly pushed
by AI and big data. Predictive upkeep, for example,
makes use of AI to investigate sensor records from
machines to expect when upkeep is required,
decreasing downtime and fees. Additionally, AI-driven,
manipulated structures can discover defects in real
time, enhancing product quality.

Business case: General Electric (GE) uses big data and
artificial intelligence for enterprise monitoring. By
studying sensor data from aircraft engines, turbines,
and different business systems, GE can expect
potential issues and plan protection before failure,
reaching predominant outcomes and saving lots of
bucks in maintenance costs.

In agriculture, AI and big data are remodeling farming
practices. AI-powered drones equipped with cameras
and sensors can reveal crop fitness and become aware

68

#16/2023

6968

of areas requiring attention. Data analytics assist in
optimizing planting schedules and irrigation, ultimately
increasing crop yields and aiding performance.

Business case: John Deere’s “See and Spray”
technology is a good example. Using technology,
computer vision and artificial intelligence can instantly
detect weeds and target them with herbicides. This
reduces the total amount of pesticides needed, saves
costs, and reduces environmental impact.

Energy

The strength zone employs AI and big data to optimize
power generation and distribution. Grid management
systems use AI to forecast electricity calls and adjust
delivery accordingly, decreasing waste. Smart meters
gather statistics on family power intake, permitting
extra-precise billing and calling for management.

Business case: Enel, one of the world’s largest energy
grid businesses, uses big data and artificial intelligence
to enhance the overall performance of wind and solar
plant life. By studying data from sensors and climate
forecasts, Enel can predict electricity production
and optimize the management of renewable power
sources.

Future prospects and trends

Explainable AI (XAI)

Federated learning

As AI systems grow to be increasingly complex, there
is a developing demand for explainable AI (XAI). XAI
makes a specialty of making AI models more obvious
and interpretable. It lets customers recognize why a
specific selection is made through an AI machine. This
is especially essential in programs where AI impacts
human lives, which includes health care and finance.

Federated studying is poised to play a full-size role
in addressing privacy issues. In this method, AI
models are educated across decentralized devices or
servers holding nearby statistics, avoiding the need to
proportion touchy facts. It preserves data privacy at
the same time as making an allowance for AI model
development.

AI in edge computing

AI for climate and sustainability

Ethical AI governance

Edge computing, where data is processed toward
its supply rather than in centralized information
centers, is gaining traction. AI models deployed at the
edge enable real-time selection-making in programs
that include autonomous vehicles and IoT gadgets,
decreasing latency and bandwidth necessities.

The convergence of big data and artificial intelligence is reshaping industries, improving decision-making
processes, and driving innovation throughout diverse sectors. As generations keep increasing, we must address
the demanding situations and ethical issues associated with this intersection. With accountable improvement and
usage, the synergy between big data and AI holds the promise of a brighter and more fact-driven future.

https://www.linkedin.com/pulse/convergence-big-data-ai-coming-heres-what-means-aashish-kalra

https://ai-jobs.net/insights/big-data-explained/

https://www.lrsitsolutions.com/Blog/Posts/241/Uncategorized/2023/7/AI-and-Big-Data/blog-post/

https://medium.com/@developtake/unveiling-the-mysteries-of-artificial-intelligence-cac941b1f7d7

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Ludwig, M. (2018). AI4People—
an ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and

AI and big data are instrumental in addressing
worldwide demanding situations together with
weather trade and sustainability. AI is used in
weather modeling, optimizing renewable energy
generation, and coping with assets more effectively.
These technologies are significant in creating a more
sustainable future.

As AI continues to integrate into diverse components
of society, ethical considerations and governance
become more and more critical. Developing sturdy
ethical frameworks and guidelines for AI and big
data utilization is crucial to ensuring accountable and
equitable deployment.

Conclusion

References

Authors

Siddharth Garg
Senior Data Engineer

Siddharth is a Senior Data Engineer with over 8.5+ years of experience in data
engineering. He has a strong background in the big data ecosystem and worked
for clients like T.D. Bank, Airtel, American Express, Dunnhumby, Expedia,
Hewlett-Packard and Standard Chartered Bank.

70

#16/2023

7170

https://www.linkedin.com/pulse/convergence-big-data-ai-coming-heres-what-means-aashish-kalra
https://ai-jobs.net/insights/big-data-explained/
https://www.lrsitsolutions.com/Blog/Posts/241/Uncategorized/2023/7/AI-and-Big-Data/blog-post/
https://medium.com/@developtake/unveiling-the-mysteries-of-artificial-intelligence-cac941b1f7d7

In today’s ever-evolving tech landscape, staying ahead
of the curve is essential for delivering top-notch
solutions to our clients. At Luxoft, we’re committed
to ensuring that our employees continuously
upgrade their knowledge, enabling them to offer
the best advice and solutions. Our dedication to
expertise doesn’t stop at internal resources; we also
bring in external top experts to enrich our learning
environment.

With Java releasing new versions every 6 months, the
pace of innovation has never been faster. To harness
the power of these advancements and apply them
effectively in our projects, we must remain up to date.
The challenge lies in acquiring new additions scattered
across various facets of Java, including language
features, compiler improvements, library expansions
and critical bug fixes.

Our courses, facilitated by the Luxoft Learning
Management and Development team and Java
community, are regularly updated to incorporate
the most recent Java versions and their capabilities.
Furthermore, our organized events shed light on
what’s new in the Java programming language.

Recently, Luxoft hosted an exclusive event, “The
Hidden Gems of Java 20,” for members of our Java
community. The event featured a presentation by
a well-known expert in the field, Mohamed Taman.
This talk, aptly named “The Hidden Gems of Java
20,” delved into the features introduced since Java 9.
Mohamed tackled important questions such as “How
to keep up with the updates and how to upgrade
in practice?” and “How to deal with the pressure of
production, customers and managers while trying to
adopt the new versions?”

To gain a deeper understanding of “The Hidden Gems
of Java 20” by Mohamed Taman including information
on cool language features, compiler changes, library
additions and critical bug fixes, you can watch the full
recording of the talk via the QR code.

Author

Speaker

Catalin Tudose

Mohamed Taman

Java and Web Trainer, Java Community Lead at Luxoft

Chief Architect and Java Champion

Catalin Tudose is not only an expert in Java and web technologies but also a
dedicated trainer. He’s the author of «JUnit in Action (3rd edition)» and «Java
Persistence with Spring Data and Hibernate.» Catalin is a sought-after speaker at
numerous Java conferences and serves as a Java Community Lead.

Mohamed Taman boasts over 15 years of continuous experience in software
development, holding roles as a solutions architect, consultant architect, speaker
and author. He’s a Java Champion and a frequent speaker at specialized conferences.
Notably, at the time of delivering this talk, Mohamed was actively participating in two
prestigious events in Europe: JNation in Coimbra, Portugal, and DevBcn in Barcelona,
Spain.
Mohamed is a member of the Java Community Process (JCP) and has been involved
in Java Specification Requests (JSRs). If you’re a Java developer, you’ve likely
used features influenced by his contributions. He’s a prolific writer for notable
publications such as Java Magazine, IBM Developer, Oracle and InfoQ. His accolades
include winning the Duke’s Choice Awards in 2013, 2014 and 2015, as well as the JCP
Outstanding Adopt-a-jar participant award in 2013.

The Hidden
Gems of
Java 20

Find new ways to grow, unite
and lead with Luxoft Chapters

Take the next step in your career

72

#16/2023

73

